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a b s t r a c t

In this paper, based on the maximum principle and the unique continuation theorem,
we present a uniqueness result for a moving boundary of a heat problem in a multilayer
medium with nonlinear interface conditions.
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1. Introduction

The boundary identification problem for the Laplace equation or a heat equation arises in the ironmaking blast furnace
where it is desired to monitor the corroded thickness of the accreted refractory wall based on the measurement of
temperature and heat flux on an accessible part of boundary or some internal positions. This kind of problem is ill-posed in
Hadamard’s sense. That is, any small change on the input data can result in a dramatic change to the solution. Hence, a special
regularization technique is necessary for stabilizing the computation. A number of numerical methods for determining a
portion of steady state boundary for a heat conducting solid have been proposed in the Refs. [1–3]. However, for estimating
a time-varying boundary in the heat conduction problem, as we know, not many papers can be found [4–7] in which the
initial temperature should beused.Most of the papersmentioned aboveused an iterativemethod to reconstruct anunknown
boundary. In [5], Fredman employed a direct method, called the method of lines, to calculate a moving boundary in one-
dimensional heat conduction problem. Liu and Guerrier in [6] applied a domain embedding method for estimating the
moving boundary in an inverse Stefan problem where solving an optimization problem by an iterative process is required.
Thus the initial temperature data should be given in advance. In [4], Badia and Moutazaim constructed an identification
method based on minimizing a Tikhonov functional by an iterative algorithm. In this paper we focus on the uniqueness of a
moving boundary for a complicated multi-layers heat problem and will study numerical methods in the future work.
We note that Manselli and Vesella had proved the continuous dependence of moving boundary on noncharacteristic

Cauchy data under an a priori information even without using the initial temperature [7]. Thus, for the boundary
identification problem of heat equation, the initial condition is not necessary.
Moreover, in some practical problems, the considered body consists of several layers with different material properties

such that the unknown temperature are discontinuous through the interfaces. For this motivation, we deal with a heat
problem with a composite material in this paper. Because the temperature at the side of moving boundary is much more
high than the temperature at another side, the interface condition between two different materials obeys the nonlinear
Stefan–Boltzmann law. To our knowledge, such a problem has not been researched previously.
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In this paper, we give a research note on the uniqueness of moving boundary (if it exists) in a multilayer medium with
nonlinear interface conditions. The related direct problem has been studied in the paper [8] in which Yang et al. proved that
there is a unique classical solution for the direct problem.

2. The formulation of a boundary identification problem with nonlinear interface conditions

In this paper, we consider a heat conduction problem in amultilayer domainwith amoving boundary s(t). For simplicity,
we use the following three layers problem as an example, which comes from a real world application.
The temperature distributions in each subdomain satisfy the following equations

∂u1
∂t
(x, t) = a21

∂2u1
∂x2

(x, t), in D1 = (0, l1)× (0, T ), (2.1)

∂u2
∂t
(x, t) = a22

∂2u2
∂x2

(x, t), in D2 = (l1, l2)× (0, T ), (2.2)

∂u3
∂t
(x, t) = a23

∂2u3
∂x2

(x, t), in D3 = (l2, s(t))× (0, T ), (2.3)

with Stefan–Boltzmann interface conditions

λ1
∂u1
∂x
(l1, t) = σ1(u42(l1, t)− u

4
1(l1, t)), 0 ≤ t ≤ T , (2.4)

λ1
∂u1
∂x
(l1, t) = λ2

∂u2
∂x
(l1, t), 0 ≤ t ≤ T , (2.5)

λ2
∂u2
∂x
(l2, t) = σ2(u43(l2, t)− u

4
2(l2, t)), 0 ≤ t ≤ T , (2.6)

λ2
∂u2
∂x
(l2, t) = λ3

∂u3
∂x
(l2, t), 0 ≤ t ≤ T , (2.7)

and boundary conditions at the fixed end x = 0

u1(0, t) = u0(t), 0 ≤ t ≤ T , (2.8)
∂u1
∂x
(0, t) = q0(t), 0 ≤ t ≤ T , (2.9)

where ui(x, t), i = 1, 2, 3 are the temperature distributions in each subdomain, T represents themaximum time of interest
for the time evolution of the problem and heat coefficients ai, λi, σi, i = 1, 2, 3 are positive constants.
The boundary identification problem of the heat problem is then to determine the boundary movement function s(t)

from a Dirichlet boundary condition

u3(s(t), t) = uM , (2.10)

where uM > 0 is a given constant indicating a fusion point of a medium.
In [7], the authors gave a conditional stability result for one phase case, fromwhich, we know there is atmost onemoving

boundary for the inverse boundary problem.
In this paper, for the multilayer case with the nonlinear interface conditions, we firstly prove a uniqueness result for the

moving boundary.

3. The uniqueness of moving boundary for the boundary identification problem

Denote the parabolic boundary for each subdomain Di, i = 1, 2, 3 as follows,

Γ1 = {0 ≤ x ≤ l1, t = 0} ∪ {x = 0, x = l1, 0 < t ≤ T },
Γ2 = {l1 ≤ x ≤ l2, t = 0} ∪ {x = l1, x = l2, 0 < t ≤ T },
Γ3 = {l2 ≤ x ≤ s(0), t = 0} ∪ {x = l2, x = s(t), 0 < t ≤ T },

and function spaces

C21 (Di) = {u : Di → R | u, uxx, ut ∈ C(Di)}, i = 1, 2, 3,

and

C10 (Di) = {u : Di → R | u, ux ∈ C(Di)}, i = 1, 2, 3.

Then we have the following lemmas.
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Lemma 3.1. Let s(t) ∈ C[0, T ], s(t) > l2 > 0, t ∈ [0, T ]. If ui(x, t) ∈ C21 (Di) ∩ C(Di), i = 1, 2, 3 satisfy (2.1)–(2.3), then

max
(x,t)∈Di

ui(x, t) = max
(x,t)∈Γi

ui(x, t), i = 1, 2, 3, (3.1)

and

min
(x,t)∈Di

ui(x, t) = min
(x,t)∈Γi

ui(x, t), i = 1, 2, 3. (3.2)

Proof. By the maximum principle in one domain, see, e.g., [9], it is easy to obtain the results in this lemma. �

In the following, we denote I1 = [0, l1], I2 = [l1, l2], I3 = [l2, s(0)].

Lemma 3.2 (The Positivity of the Solution). Let s(t) ∈ C[0, T ], s(t) > l2 > 0, t ∈ [0, T ]. Suppose ui(x, t) ∈ C21 (Di)∩C
1
0 (Di), i =

1, 2, 3 satisfy (2.1)–(2.10). If

ui(x, 0) > 0, x ∈ Ii, i = 1, 2, 3, u0(t) > 0, t ∈ [0, T ], (3.3)

then we have

ui(x, t) > 0, (x, t) ∈ Di, i = 1, 2, 3.

Proof. The proof is similar to Lemma 2.5 in the paper [8]. �

Lemma 3.3. Let s(t) ∈ C[0, T ], s(t) > l2 > 0, t ∈ [0, T ]. Suppose ui(x, t) ∈ C21 (Di) ∩ C
1
0 (Di), i = 1, 2, 3 satisfy (2.1)–(2.10).

If

0 < ui(x, 0) ≤ uM , x ∈ Ii, i = 1, 2, 3, 0 < u0(t) ≤ uM , t ∈ [0, T ], (3.4)

then we have

0 < ui(x, t) ≤ uM , (x, t) ∈ Di, i = 1, 2, 3.

Proof. Setting

vi(x, t) = ui(x, t)− uM , (x, t) ∈ Di, i = 1, 2, 3.

By Lemma 3.1, for i = 1, 2, 3 and (x, t) ∈ Di, we have

vi(x, t) ≤ max
0≤t≤T

{
v1(0, t), v3(s(t), t), max

x∈I1
v1(x, 0), max

x∈I2
v2(x, 0),

max
x∈I3

v3(x, 0), v1(l1, t), v2(l1, t), v2(l2, t), v3(l2, t)
}
.

From (3.4), we know{
v1(0, t) = u0(t)− uM ≤ 0,
v3(s(t), t) = 0,
vi(x, 0) = ui(x, 0)− uM ≤ 0.

If v1(l1, t), v2(l1, t), v2(l2, t), v3(l2, t) ≤ 0 for 0 ≤ t ≤ T , then we have vi(x, t) ≤ 0 in Di, i = 1, 2, 3. Further ui(x, t) ≤ uM
and we have already proved the result. Otherwise, there is a minimum time t0 ∈ (0, T ] and i ∈ {1, 2, 3}, j ∈ {1, 2} such that

vi(lj, t0) = m = max
t∈[0,T ]

{v1(l1, t), v2(l1, t), v2(l2, t), v3(l2, t)} > 0. (3.5)

If v1(l1, t0) = m. By Lemma 3.1, we have

v1(x, t) ≤ v1(l1, t0), (x, t) ∈ I1 × [0, t0],

namely v1(x, t) attains its maximum over I1× [0, t0] at (l1, t0). If there is a point in (0, l1)× (0, t0] such that v1(x, t) attains
its maximum, then by the strong maximum principle (refer to [10], pp. 54), we have v1(x, t) ≡ C for x ∈ I1, 0 ≤ t ≤ t0
where C is constant. Otherwise, for all (x, t) ∈ (0, l1) × (0, t0], we have v1(x, t) < m, by the strong maximum principle
(refer to [9], pp. 170), we know ∂v1

∂x (l1, t0) > 0. If v1(x, t) ≡ C , by v1(0, t) ≤ 0, v1(l1, t0) > 0, we can see that there is a
contradiction. If ∂v1

∂x (l1, t0) > 0, by

λ1
∂v1

∂x
(l1, t0) = σ1(u42(l1, t0)− u

4
1(l1, t0)), (3.6)
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we know u42(l1, t0) > u
4
1(l1, t0), from Lemma 3.2, we have u2(l1, t0) > u1(l1, t0) and v2(l1, t0) > v1(l1, t0) which has a

contradiction with (3.5).
For the case of v2(l1, t0) = m, by the same method, we can prove that v2(x, t) ≡ C for x ∈ I2, 0 ≤ t ≤ t0 or

−
∂v2
∂x (l1, t0) > 0, where C is constant. If v2(x, t) ≡ C , by v2(0, t) ≤ 0, v2(l1, t0) > 0, we can see that there is a contradiction.

If ∂v2
∂x (l1, t0) < 0, by

λ1
∂v1

∂x
(l1, t0) = λ2

∂v2

∂x
(l1, t0) = σ1(u42(l1, t0)− u

4
1(l1, t0)), (3.7)

we know u42(l1, t0) < u
4
1(l1, t0), from Lemma 3.2, we have u2(l1, t0) < u1(l1, t0) and v2(l1, t0) < v1(l1, t0) which has a

contradiction with (3.5).
For the other cases of v2(l2, t0) = m or v3(l2, t0) = m, the proofs are similar. Thus, the proof is completed. �

Under a physically reasonable condition, the following theorem give the uniqueness of moving boundary for problem
(2.1)–(2.10).

Theorem 3.4 (Uniqueness). For j = 1, 2, we set Dj3 = {(x, t) | l2 < x < sj(t), 0 < t < T }, where sj(t) ∈ C
2
[0, T ], sj(t) > l2

for 0 ≤ t ≤ T . Let uji(x, t) ∈ C
2
1 (Di) ∩ C

1
0 (Di), i = 1, 2 and u

j
3(x, t) ∈ C

2
1 (D

j
3) ∩ C

1
0 (D

j
3) satisfy equations

∂uji
∂t
(x, t) = a2i

∂2uji
∂x2

(x, t), in Di, i = 1, 2, (3.8)

∂uj3
∂t
(x, t) = a23

∂2uj3
∂x2

(x, t), in Dj3, (3.9)

with boundary conditions

uj1(0, t) = u0(t), 0 ≤ t ≤ T , (3.10)

uj3(sj(t), t) = uM , 0 ≤ t ≤ T , (3.11)

and interface conditions

λ1
∂uj1
∂x
(l1, t) = σ1

(
(uj2(l1, t))

4
− (uj1(l1, t))

4
)
, 0 ≤ t ≤ T , (3.12)

λ1
∂uj1
∂x
(l1, t) = λ2

∂uj2
∂x
(l1, t), 0 ≤ t ≤ T , (3.13)

λ2
∂uj2
∂x
(l2, t) = σ2

(
(uj3(l2, t))

4
− (uj2(l2, t))

4
)
, 0 ≤ t ≤ T , (3.14)

λ2
∂uj2
∂x
(l2, t) = λ3

∂uj3
∂x
(l2, t), 0 ≤ t ≤ T , (3.15)

where j = 1, 2. We assume that

0 < uji(x, 0) ≤ uM , x ∈ Ii, (3.16)

and

0 < u0(t) ≤ uM , 0 < t < T and u0(t) 6≡ uM . (3.17)

If there exist t1, t2 ∈ (0, T ) such that

∂u11
∂x
(0, t) =

∂u21
∂x
(0, t), t1 < t < t2,

then s1(t) = s2(t), 0 ≤ t ≤ T .

Proof. Let s1 6≡ s2 in (0, T ), then there exists t0 ∈ (0, T ) such that s1(t0) 6= s2(t0). Without loss of generality, we may
assume that x0 = s2(t0) < s1(t0).
By the unique continuation property for a heat equation (e.g., Isakov [11], Chapter 3) for u11 − u

2
1, we see that u

1
1 = u

2
1

on D1. Meanwhile, u11(l1, t) = u
2
1(l1, t), ∂xu

1
1(l1, t) = ∂xu21(l1, t). According to the interface conditions (3.12)–(3.13) and

uj2(l1, t) > 0 for j = 1, 2, we have u
1
2(l1, t) = u

2
2(l1, t), ∂xu

1
2(l1, t) = ∂xu

2
2(l1, t).

Similarly, we can obtain u12(l2, t) = u
2
2(l2, t), ∂xu

1
2(l2, t) = ∂xu

2
2(l2, t) and u

1
3(l2, t) = u

2
3(l2, t), ∂xu

1
3(l2, t) = ∂xu

2
3(l2, t).
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By the unique continuation property for u13−u
2
3, we also obtain that u

1
3 = u

2
3 on D

1
3 ∩ D

2
3. In particular, by (3.11), we have

u13(x0, t0) = u
2
3(x0, t0) = uM .

By Lemma 3.3, we know u13(x, y) attains its maximum over D
1
3 at (x0, t0), by the strong maximum principle (refer to [10],

pp. 54), we know u13(x, t) ≡ uM on D
1
3t0 = {l2 ≤ x ≤ s1(t), 0 ≤ t ≤ t0}. By the unique continuation, we have u

1
3(x, t) ≡ uM

on D13. Therefore, u
1
3(l2, t) = uM and ∂xu13(l2, t) = 0. According to the interface condition (3.14) and (3.15), we have

u12(l2, t) = uM and ∂xu
1
2(l2, t) = 0, then by the unique continuation again, we obtain u

1
2 ≡ uM in D2.

Similarly, we can obtain u11 ≡ uM in D1, from condition (3.17), we can see that there is a contradiction.
Thus, s1(t) = s2(t) for t ∈ (0, T ), by the continuity of s1(t) and s2(t) on [0, T ], the proof is completed. �
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