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Introduction
Escalating air pollution is contributing to increased 
cardiovascular health problems currently witnessed in the 
world. Cardiac diseases such as ischaemic heart disease and 
strokes account for 80% of ambient air pollution-related early 
deaths [1]. Additionally, it is estimated that about 3 million 
deaths and 85 million disability adjusted live years (DALYs) 
resulted from particulate matter of ambient air pollution in 
2012 [1]. Ambient air pollution has been on the rapid increase 
in most part of the world due to industrialization, urbanization, 
and motorization [1]. 

Ambient air pollutants comprise of particulate matter (PM), 
gases, organic compounds, and toxic metals [2,3]. Particulate 
matter (PM) is a blend of liquid droplets (aerosols) and solid 
particles like dust, soot, smoke, and dirt. PM is found in 
smoke, diesel exhaust, and haze that either come specifically 
from combustion or is a result of response to gases and 
sunlight or air [4]. In any case, the inhalable particles are 
of 10 μm in aerodynamic diameter (PM10), fine particles 
2.5 μm (PM2.5), and ultra-fine particles <0.1 μm (UFP). 
PM2.5, most generally utilized as a representative marker 
of exposure to air pollution, is progressively measured 
and checked by national air quality monitoring networks 
[5]. However, experimental evidence suggests that UFP 
may be more dangerous than PM10 and PM2.5 due to 
their chemical composition, small size, large surface area/
mass ratio, capability of generating reactive oxygen species 
(ROS), high retention rate, and deep penetration in the 
respiratory system [6]. Thus the World Health Organization 
(WHO) and the Organization for Economic Co-operation 

and Development (OECD) have called for a critical and 
comprehensive assessment of UFP safety [7]. Moreover, 
research substantiations demonstrate that exposure to UFPs 
adds to the advancement of cardiovascular disease; along 
these lines, triggering acute cardiac events such as altered 
heart rate, heart rate variability, changes in microvascular 
function, and systemic inflammation [8,9]. This is due to their 
unique physicochemical properties which have unpredicted 
biological effects [10-12]. 

Polycyclic aromatic hydrocarbons (PAHs) result from 
incomplete combustion of organic materials and are ever 
present in the environment. Human exposure to PAHs 
can occur via ingestion of PAHs contaminated soil, food, 
and water, inhalation of PAHs contaminated soil dust and 
air [13], and dermal contact with PAHs contaminated soil 
[14,15]. After PAHs entering human body via various 
exposure pathways, complex metabolism and unknown 
factors would also make PAHs reach cardiovascular tissues 
and organs. PAH has been previously link to development 
of cardiovascular disease (CVD) such as coronary heart 
disease, peripheral arterial disease, stroke, and myocardial 
infarction [16-20]. 

Due to widespread sources and persistent UFPs and PAHs 
in the environment. Human beings are exposed to UFP and 
PAH mixtures in particulate phases in ambient air. Long-term 
exposure to high concentrations of the mixture is associated with 
adverse health problems. Thus, studies on PAHs in particulate 
matter (PM), such as UFP in ambient air, have become attention 
greater focus of research in recent years.

There is increased cardiovascular disease incidence attributed to ambient air pollution. It is 
estimated that ischaemic heart disease and stroke account for 80% of ambient air pollution-
related early deaths. The most deleterious are the ultrafine particles (UFPs) which have more 
prominent potential health threat, since they can act as carriers of other strong air pollutant 
such as polycyclic aromatic hydrocarbons (PAHs). UFPs are small in size, hence can easily 
penetrate and reach cardiovascular tissues and organs. To understand their mechanisms, 
studies on UFPs and PAHs induced cardiovascular diseases were reviewed. The studies showed 
that UFPs and PAHs initiate events in atherogenesis including oxidative stress, expression 
of cell adhesion molecules on the surface of the endothelium, inflammation, and endothelial 
dysfunction. Endothelial dysfunction is associated with cardiovascular diseases such as 
hypertension, coronary artery disease, chronic heart failure, and peripheral vascular disease. 
The current review provides useful information on deleterious effect of UFP and PAH exposure 
on cardiovascular system. Thus advancing knowledge on UFP and PAH toxicity underscores the 
importance of the cardiovascular effects of air pollutants.
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Ultra-fine Particles and Polycyclic Aromatic 
Hydrocarbons
Ultra-fine Particles (UFPs) have been found to have an 
atmospheric concentration ten times higher in the urban air 
than in rural air and are considered the most detrimental 
of all PM fractions [21]. This is on the account of UFP 
size empowers them to infiltrate through the lung to the 
circulatory system and reach other organs [22]. In addition, 
UFPs act as carriers of other strong air pollutant such as 
Polycyclic Aromatic Hydrocarbons (PAHs) [23] because of 
their adsorption capabilities. UFP are incidentally generated 
in the environment, often as by-products of fossil fuel 
combustion, condensation of semi-volatile substances or 
industrial emissions [24,25]. In addition, the speedy growth 
of nanotechnology is increasing the environmental exposure 
to nano-size particles. This exposure may be especially 
chronic for those employed in research laboratories and in 
high tech industry where workers handle, manufacture, use 
and dispose of nanoparticles. 

On the other hand, PAHs are ubiquitous environmental pollutants 
generated primarily during the incomplete combustion of 
organic materials such as coal, oil, petrol, and wood. Exposure to 
PAH has been previously link to development of cardiovascular 
disease (CVD) such as coronary heart disease, peripheral 
arterial disease, stroke, and myocardial infarction [16-20]. 
Besides, elevated PAH metabolites in urine has been associated 
with increased CVD events [18]. Moreover, a previous study 
reported an increased risk for fatal ischemic heart disease in 
relation to occupational exposure to benzo(a)pyrene [16]. The 
major route of PAH exposure include in halation, ingestion, 
and dermal contact in both occupational and non-occupational 
setting [26]. Many PAHs are toxic and rapidly distributed in a 
wide variety of tissues with a marked tendency to localize in 
body fat [26].

Polycyclic aromatic hydrocarbons (PAHs) are organic 
compound pollutants, which are ubiquitous in ambient air and 
exist as gases or joined to the Particulate Matter (PM) [27]. 
The existing interaction between UFPs and PAH from traffic-
related air pollutants [28] might be the reason for progression 
of atherosclerosis observed in low level pollution below the 
existing regulatory standards [29,30].

Mechanisms of Ultra-fine Particles and 
Polycyclic Aromatic Hydrocarbons Action
Upon entering the bloodstream, the UFPs bound with PAH 
get into direct contact with blood vessels and the heart 
endothelial cells lining. Endothelial cells are the biological 
barriers which mediate clearance of nanoparticles, maintain 
vascular function and homeostasis [31]. Moreover, in vivo 
and human studies have indicated damage to endothelial 
cells as an important mechanistic event by which inhalation 
of particles is associated with cardiovascular diseases [32]. 
The initial events in atherogenesis include the expression of 
cell adhesion molecules on the surface of the endothelium, 
inflammation, and endothelial dysfunction [33]. Both UFPs 
and PAH have also been shown to individually induce 
endothelial cell toxicity resulting in endothelial dysfunction 

[34-36]. Long term exposure to high levels of environmental 
UFPs have been shown to increase risk of arteriosclerosis, 
whereas short-term exposure can cause changes in heart-
rate variability [37]. UFP exposure depresses myocardial 
contractile response and coronary flow in both spontaneously 
hypertensive and wild-type rats [38,39]. 

Tithof et al. (2002) investigate the effects of polycyclic aromatic 
hydrocarbons contained in cigarette smoke on phospholipase 
A2 (PLA2) activity and apoptosis of human coronary artery 
endothelial cells. They found that B(a)P induce apoptosis 
of endothelial cells by a mechanism that involves activation 
of phospholipase A2 (PLA2) [40], leading to endothelium 
dysfunction. Endothelial dysfunction has been recognized 
as the source of multiple cardiovascular events that causes 
damage to the vascular wall, forms atherosclerotic plaque 
and consequently promotes vascular injury [41,42]. Besides, 
cardiovascular diseases such as hypertension, coronary artery 
disease, chronic heart failure, and peripheral vascular disease 
have been associated with endothelial dysfunction [43]. The 
underlying mechanisms are not understood, but oxidative stress 
and systemic inflammation have been suggested to play a role in 
PAH-induced CVD [44,45].

Ultra-fine Particles and Polycyclic Aromatic 
Hydrocarbons Joint Effects
Ultra-fine particles have been shown to have a greater 
content of redox active compounds, such as prooxidative 
polycyclic aromatic hydrocarbons (PAHs) that could provide 
them with a greater prooxidative potential [46]. In addition, 
their smaller size and greater surface-to-mass ratio may 
enable them to have greater bioavailability for the PAHs on 
their large surface area, making them more accessible to the 
contact sites of cells [46]. PAHs adsorb onto particles play 
a toxicological role in generating ROS, oxidative stress, and 
inflammation once inhaled [47]. Our previous study reported 
unanticipated toxicity induced by the co-exposure of UFPs 
and PAH, which was beyond the well-known toxicities of 
the individual compounds [48]. The SiNPs and B[a]P co-
exposure of induced excessive oxidative stress, subsequently 
resulting to DNA damage, cell cycle arrest, and apoptosis 
of endothelial cells [48]. Moreover, enhanced expression 
of proinflammatory and procoagulant genes have also 
been previously observed in SiNPs and B[a]P co-exposure 
[49], which is an indication of inflammation-coagulation 
cascade involvement in the co-exposure toxicity mechanism. 
Furthermore, oxidant injury plays an important role in UFP-
induced adverse health effects including exacerbation and 
promotion of atherosclerosis [50].

In summary, the current review provides useful information on 
deleterious effect of UFP and PAH exposure on cardiovascular 
system. Thus advancing knowledge that underscores the 
importance of the cardiovascular effects of air pollutants. 
Further research is required to better understand the specific 
mechanisms by which PAH bounded UFP can lead to various 
cardiovascular effects. In addition, better parameters need to 
be developed to improve the assessment of PAH bounded UFP 
toxicity (Figure 1).
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