International Journal of Algebra, Vol. 13, 2019, no. 1, 29-36
HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/ija.2019.81239

Rank and Subdegrees of $\operatorname{PGL}(2, q)$ Acting Cosets of $\operatorname{PGL}(2, e)$ for q an Even Power of e

Patrick Mwangi Kimani
Department of Mathematics and Computer Science
University of Kabianga, P. O. Box 2030-20200, Kericho, Kenya
Ireri Kamuti
Department of Pure and Applied Mathematics
Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya

Jane Rimberia

Department of Pure and Applied Mathematics
Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya
Copyright © 2019 Patrick Mwangi Kimani, Ireri Kamuti and Jane Rimberia. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The action of projective general group on the cosets of its maximal subgroups has been studied. For instance, [9] studied the action of G on the cosets of $\operatorname{PGL}(2, e)$ when q is an odd prime power of e. In this paper, we determine the rank and subdegrees of the action of $P G L(2, q)$ on the cosets of its subgroup $P G L(2, e)$ for odd q and an even power of e. We apply the table of marks to achieve this.

Keywords: Rank, Subdegrees, Mark

1 Introduction

Let a group G act transitively on a set X. The orbits of the stabilizer G_{α} of a point $\alpha \in X$ are called suborbits of G on X. The number $R(G)$ of these
suborbits is known as the rank of G on X and the suborbits length are known as the subgegrees of G on X. Rank and subdegrees are independent of the $\alpha \in X$ chosen. Any group G acts transitively on the set of right cosets of any of its subgroup. In this paper the set X is the set of the right cosets of $H=P G L(2, e)$ in $G=P G L(2, q)$ where q is an even power of e. In this paper both q and e represents p^{i} for some prime p and $i \in \mathbb{Z}^{+}$. The subgroup $H<P S L(2, q)$ and therefore H is a proper subgroup of G.

2 Preliminary Notes

Theorem 2.1. [11] Let G be a group acting on set X and $\operatorname{Orb}_{G}(\alpha)$ be an orbit of G containing ainX. Then,

$$
\begin{equation*}
\left|\operatorname{Or}_{G}(\alpha)\right|=\frac{|G|}{\left|G_{\alpha}\right|} \tag{1}
\end{equation*}
$$

Theorem 2.2. [4] The following are the subgroups of $\operatorname{PGL}(2, q)$ for q odd, where $\delta=\left\{\begin{array}{ll}1, & \text { if } q \equiv 1 \bmod 4 \\ -1, & \text { if } q \equiv-1 \bmod 4\end{array}\right.$:
i. 2 conjugacy classes of cyclic subgroups C_{2}. One class lies in the subgroup $\operatorname{PSL}(2, q)$ and consist of $\frac{q(q+\delta)}{2}$ subgroups. The other class consist of $\frac{q(q-\delta)}{2}$ subgroups.
ii. 1 conjugacy class containing $\frac{q(q \mp \delta)}{2}$ conjugate cyclic subgroups $C_{h}(h>2)$ for every $h \mid q \pm \delta$.
iii. 2 conjugacy classes of dihedral subgroups D_{4}. One class lie in the subgroup $\operatorname{PSL}(2, q)$ consisting of $\frac{q\left(q^{2}-1\right)}{24}$ subgroups. The other class consisting of $\frac{q\left(q^{2}-1\right)}{8}$ subgroups.
iv. 2 conjugacy classes of dihedral subgroups $D_{2 h}$, where $h \left\lvert\, \frac{q \pm \delta}{2}\right.$ and $h>2$. One class lie in the subgroup PSL $(2, q)$ and consist of $\frac{q\left(q^{2}-1\right)}{4 h}$ subgroups. The other class consist of $\frac{q\left(q^{2}-1\right)}{4 h}$ subgroups.
v. 1 conjugacy class of $\frac{q\left(q^{2}-1\right)}{2 h}$ dihedral subgroups $D_{2 d}$, where $\frac{q \pm \delta}{h}$ is an odd integer and $h>2$.
vi. $\frac{q\left(q^{2}-1\right)}{24}$ subgroups $A_{4}, \frac{q\left(q^{2}-1\right)}{24}$ subgroups S_{4} and $\frac{q\left(q^{2}-1\right)}{60}$ subgroups A_{5} when $q \equiv-1 \bmod 10$. There is only one conjugacy class of any of these types of subgroups and all lie in the subgroup $\operatorname{PSL}(2, q)$ except for S_{4} when $q \equiv-3 \bmod 8$.
vii. 1 conjugacy class containing $\frac{q\left(q^{2}-1\right)}{e\left(e^{2}-1\right)}$ conjugate $\operatorname{PSL}(2, e)$ where q is a power of e.
viii. The subgroups $P G L(2, e)$.
ix. The elementary abelian groups $P_{p^{r}}$ of order p^{r} for every $r=1,2, \ldots, f$.
x. Semidirect product of the elementary abelian groups $P_{p^{r}}$ of order p^{r} for every $r=1,2, \ldots, f$ and a cyclic group C_{h} with $h \mid(q-1)$ and $h \mid\left(p^{r}-1\right)$.
More details on the subgroup structure of $P G L(2, q)$ and $P S L(2, q)$ are also found in [1], [5], [6] and [10].

Definition 2.3. [2] Let P_{G} be a permutation representation (transitive or intransitive) of G on X. The mark of the subgroup H of G in P_{G} is the number of points of X fixed by every permutation of H.
In case $G\left(/ H_{i}\right)$ is a coset representation, the mark of H_{j} in $G\left(/ H_{i}\right)$ denoted by $m\left(H_{j}, H_{i}, G\right)$ is the number of cosets of H_{i} in G left fixed by every permutation of H_{j}.

Definition 2.4. [7] defined the mark in terms of normalizers of subgroups of a group as; If $H_{j} \leq H_{i} \leq G$ and $H_{j_{1}}, H_{j_{2}}, \cdots, H_{j_{n}}$ is a complete set of conjugacy class representatives of subgroups of G_{i} that are conjugate to H_{j} in G, then

$$
\begin{equation*}
m\left(H_{j}, H i, G\right)=\sum_{k=1}^{n}\left|N_{G}\left(H_{j_{k}}\right): N_{H_{i}}\left(H_{j_{k}}\right)\right| \tag{2}
\end{equation*}
$$

In particular when $n=1, H_{j}$ is conjugate in H_{i} to all subgroups H_{j} that are contained in H_{i} and conjugate to H_{j} in G and

$$
\begin{equation*}
m\left(H_{j}, H_{i}, G\right)=\left|N_{G}\left(H_{j}\right): N_{H_{i}}\left(H_{j}\right)\right| . \tag{3}
\end{equation*}
$$

[See [8].]
Definitions 2.3, and 2.4 are all equivalent by [8].
Definition 2.5. Let $F_{1}, F_{2}, \cdots, F_{t}$ be a set of representatives of all distinct conjugacy classes of subgroups of H in G, ordered such that $\left|F_{1}\right| \leq\left|F_{2}\right| \leq$ $\cdots \leq\left|F_{t}\right|=|H|$. The table of marks of H is the matrix, $M=\left(m_{i j}\right)$, where $m_{i j}=m\left(F_{j}, F_{i}, H\right)$.
Let Q_{i} be the number of suborbits \triangle_{j} on which the action of H is equivalent to its action on the cosets of $F_{i}(i=1,2, \cdots, t)$. The subdegrees of G acting on right cosets H are obtained by computing all Q_{i}.

Theorem 2.6. The numbers Q_{i} satisfy the system of linear equations,

$$
\begin{equation*}
\sum_{i=j}^{t} Q_{i} m\left(F_{j}, F_{i}, H\right)=m\left(F_{j}, H, G\right) \tag{4}
\end{equation*}
$$

for each $j=1,2, \cdots, t$.
[See [7].]

3 Main Results

Lemma 3.1. Suppose $m\left(F_{a}, H, G\right)=m(H, H, G)$, with $1<a<t$, then $Q_{a}=0$. Moreover, if $F_{a}<F_{b}$ and $F_{b} \neq H$, then $Q_{b}=0$.

Proof. Let T be the table of marks of H. All the entries in the last row of T are 1's. That is $m_{t j}=1 \forall j=1, \ldots, t$. By Theorem 2.6, $Q_{t}=m(H, H, G)$. Also

$$
\begin{gather*}
Q_{a} m_{a a}+Q_{a+1} m_{a a+1}+\cdots+Q_{t-1} m_{a t-1}+Q_{t}=m\left(F_{a}, H, G\right)=m(H, H, G) \tag{5}\\
\Rightarrow Q_{a} m_{a a}+Q_{a+1} m_{a a+1}+\cdots+Q_{t-1} m_{a t-1}=0 \tag{6}
\end{gather*}
$$

But $m_{i j} \geq 0, Q_{j} \geq 0 \quad \forall i=1, \ldots, t, j=1, \ldots, t$ and $m_{a} \neq 0$. It follows that $Q_{a}=0$. If $F_{a} \leq F_{b}<H$, then $m_{a b} \neq 0$. By Equation (6), It follows that $Q_{b}=0$.

The stabilizer of the coset H is H and the stabilizer of the coset $H g$ for some $g \in G$ is a conjugate subgroup H_{0} of H in G. The stabilizer of $H g$ in H is $H \cap H_{0}$. If subgroup F_{j} in G is not an intersection of H and some conjugate H_{0} of H in G, then it cannot be a stabilizer of a coset in H. By Theorem 2.6, $Q_{j}=0$. Such subgroups of H can be eliminated from the table of marks of H during computation of subdegrees of G acting on the cosets of H. Also, all the subgroups F_{j} of H such that $Q_{j}=0$ can be eliminated by Lemma 3.1.

Theorem 3.2. Let $G=\operatorname{PGL}(2, q)$ act on the cosets of $H=P G L(2, e)$ where q is odd and an even power of e. Then the rank is $\frac{e^{5} q-e^{5}+e^{4} q-e^{3} q+e^{3}-4 e^{2} q+2 e^{2}+q^{3}}{e^{2}\left(e^{2}-1\right)^{2}}$ and the subdegrees are as in Table 1 with $\beta=\frac{\left(e^{2}-q\right)\left(e^{4}+e^{3}-e^{2} q+e^{2}+e-q^{2}\right)}{e^{2}\left(e^{2}-1\right)^{2}}$.

Table 1: Subdegrees of $G=P G L(2, q)$ acting on cosets of $H=P G L(2, e)$ with q odd and even power of e

Suborbit length:	1	$\frac{e(e-1)}{2}$	$\frac{e(e+1)}{2}$	$e(e-1)$	$e^{2}-1$	$e(e+1)$	$\frac{e\left(e^{2}-1\right)}{2}$	$e\left(e^{2}-1\right)$
No of sub- orbits:	1	1	1	$\frac{q-2 e-3}{2(e+1)}$	$\frac{q-e}{e(e-1)}$	$\frac{q-2 e+1}{2(e-1)}$	$2 \frac{q-e^{2}}{e^{2}-1}$	β

Proof. we first determine the subgroups F which may result from intersection of H and a conjugate subgroup H_{0} in G.
i. Suppose $F \cong H \cap H_{0}$ is isomorphic to a cyclic subgroup C_{n} where $n \mid e \pm 1$. Then it must be an intersection of two maximal cyclic subgroups of H and H_{0} containing C_{n}. The two subgroups have the same order and hence they intersect either wholly or at identity. Thus $n=1$ or $e \pm 1$.
ii. Suppose $F \cong H \cap H_{0}$ is isomorphic to a dihedral subgroup $D_{2 n}$ where $n \mid e \pm 1$ with $n \neq p$. Then it must be an intersection of two maximal dihedral subgroups of H and H_{0} containing $D_{2 n}$. The subgroup $D_{2 n}$ contains n involutions and a cyclic subgroup C_{n}. Therefore by i. $n=1,2$ or $e \pm 1$.
iii. Suppose $F \cong H \cap H_{0}$ is isomorphic to an Abelian subgroup of order p^{r}. Then F must be an intersection of two maximal Abelian subgroups of H and H_{0} containing F. The two subgroups are of the same order e and therefore intersection is either identity or the whole subgroup. Thus $r=0$ or m where $e=p^{m}$.
iv. Suppose $F \cong H \cap H_{0}$ is isomorphic to a semidirect product of a Abelian group of order p^{r} and a cyclic subgroup C_{n} where $n \mid e-1$. Then it must be an intersection of two maximal semidirect products of the form $P_{e} \ltimes C_{e-1}$ of H and H_{0} containing F. By i. and iii. $F=I$ or $P_{e} \ltimes C_{e-1}$.

The representatives of the distinct conjugacy classes of H to consinder are; I, $C_{2}(1), C_{2}(2), D_{4}(1), D_{4}(2), C_{e-1}, C_{e+1}, A_{4}, A_{5}, S_{4}, P_{e}, P_{e} \ltimes C_{e-1}, D_{2(e-1)}$, $D_{2(e+1)}, \operatorname{PSL}\left(2, p^{r}\right)$ and $P G L\left(2, p^{r}\right)$, where $e=p^{r}$. By Theorem 2.2, the conjugacy class, A_{5} exists only when $e \equiv \pm 1 \bmod 10$. Next we compute the marks of F in $G(/ H)$ using Theorem 2.2, and Definition 2.4 and display them in Table 2 where $\epsilon=\left\{\begin{array}{ll}1, & \text { if } q \equiv 1 \bmod 4 \\ -1, & \text { if } q \equiv-1 \bmod 4\end{array}\right.$.
(Note : when $e \equiv 1 \bmod 4$ and $4 \nmid a, \frac{q-1}{2(e-1)}$ is odd, when $e \equiv-1 \bmod 4$ and $4 \nmid a \frac{q-1}{2(e+1)}$ is odd. All the other cases where a is even, $\frac{q-1}{e \pm 1}$ is even.)
Eliminating all subgroups with $m(F, H, G)=1$ by use of Theorem 3.1, we are left with the subgroups $I, C_{2}(1), C_{2}(2), D_{4}(1), D_{4}(2), C_{e-1}, C_{e+1}, P_{e}, D_{2(e-1)}$ and $D_{2(e+1)}$. Therefore the required table of marks is Table 3 or 4 according to the nature of e.

Table 2: Marks of F in $G(/ H)$ where $G=P G L(2, q), H=P G L(2, e)$ with q odd and even power of e

F	$\left\|N_{H}(F)\right\|$	$\left\|N_{G}(F)\right\|$	$m(F, H, G)$
I	$e\left(e^{2}-1\right)$	$q\left(q^{2}-1\right)$	$\frac{q\left(q^{2}-1\right)}{\left.e e^{2}-1\right)}$
$C_{2}(1)$	$2(e-1)$	$2(q-1)$	$\frac{2 e(q-1)}{\left.e^{2}-1\right)}$
$C_{2}(2)$	$2(e+1)$	$q-1$	$\frac{2 e(q-1)}{e^{2}-1}$
$D_{4}(1)$	$\frac{24}{2-\epsilon}$	24	4
$D_{4}(2)$	$\frac{24}{2+\epsilon}$	24	4
C_{e-1}	$2(e-1)$	$2(q-1)$	$\frac{q-1}{e-1}$
C_{e+1}	$2(e+1)$	$2(q+1)$	$\frac{q-1}{e+1}$
A_{4}	24	24	1
A_{5}	60	60	1
S_{4}	24	24	1
P_{e}	$e(e-1)$	$q(e-1)$	$\frac{q}{e}$
$P_{e} \ltimes C_{e-1}$	$e(e-1)$	$e(e-1)$	1
$D_{2(e-1)}$	$2(e-1)$	$4(e-1)$	2
$D_{2(e+1)}$	$2(e+1)$	$4(e+1)$	2
$P S L\left(2, p^{r}\right)$	$p^{r}\left(p^{2 r}-1\right)$	$p^{r}\left(p^{2 r}-1\right)$	1
$P G L\left(2, p^{r}\right)$	$p^{r}\left(p^{2 r}-1\right)$	$p^{r}\left(p^{2 r}-1\right)$	1
H	$e\left(e^{2}-1\right)$	$e\left(e^{2}-1\right)$	1

Table 3: Table of marks of $H=P G L(2, e)$ when $e \equiv 1 \bmod 4$

	I	$C_{2}(1)$	$C_{2}(2)$	$D_{4}(1)$	$D_{4}(2)$	C_{e-1}		C_{e+1}	$D_{2(e-1)}$	$D_{2(e+1)}$	H
$H(/ I)$	$e\left(e^{2}-1\right)$										
$H\left(/ C_{2}(1)\right)$	$\frac{e\left(e^{2}-1\right)}{2}$	$e-1$									
$H\left(/ C_{2}(2)\right)$	$\frac{e\left(e^{2}-1\right)}{2}$	0	$e+1$								
$H\left(/ D_{4}(1)\right)$	$\frac{e\left(e^{2}-1\right)}{4}$	$3(e-1)$	0	6							
$H\left(/ D_{4}(2)\right)$	$\frac{e\left(e^{2}-1\right)}{4}$	$\frac{e-1}{2}$	$e+1$	0	2						
$H\left(/ C_{e-1}\right)$	$e(e+1)$	2	0	0	0	2					
$H\left(/ P_{e}\right)$	$e^{2}-1$	0	0	0	0	0	$e-1$				
$H\left(/ C_{e+1}\right)$	$e(e-1)$	0	2	0	0	0	0	2			
$H\left(/ D_{2(e-1)}\right)$	$\frac{e(e+1)}{2}$	$\frac{e+1}{2}$	$\frac{e+1}{2}$	3	1	1	0	0	1		
$H\left(/ D_{2(e+1)}\right)$	$\frac{e(e-1)}{2}$	$\frac{e-1}{2}$	$\frac{e+3}{2}$	0	2	0	1	0	0	1	
$H(/ H)$	1	1	1	1	1	1	1	1	1	1	1

Table 4: Table of marks of $H=P G L(2, e)$ when $e \equiv-1 \bmod 4$

	I	$C_{2}(1)$	$C_{2}(2)$	$D_{4}(1)$	$D_{4}(2)$	C_{e-1}	P_{e}	C_{e+1}	$D_{2(e-1)}$	$D_{2(e+1)}$	H
$H(/ I)$	$e\left(e^{2}-1\right)$										
$H\left(/ C_{2}(1)\right)$	$\frac{e\left(e^{2}-1\right)}{2}$	$e-1$									
$H\left(/ C_{2}(2)\right)$	$\frac{e\left(e^{2}-1\right)}{2}$	0	$e+1$								
$H\left(/ D_{4}(1)\right)$	$\frac{e\left(e^{2}-1\right)}{4}$	$e-1$	$\frac{e+1}{2}$	2							
$H\left(/ D_{4}(2)\right)$	$\frac{e\left(e^{2}-1\right)}{4}$	0	$\frac{3(e+1)}{2}$	0	6						
$H\left(/ C_{e-1}\right)$	$e(e+1)$	2	0	0	0	2					
$H\left(/ P_{e}\right)$	$e^{2}-1$	0	0	0	0	0	$e-1$				
$H\left(/ C_{e+1}\right)$	$e(e-1)$	0	2	0	0	0	0	2			
$H\left(/ D_{2(e-1)}\right)$	$\frac{e(e+1)}{2}$	$\frac{e+1}{2}$	$\frac{e+1}{2}$	2	0	1	0	0	1		
$H\left(/ D_{2(e+1)}\right)$	$\frac{e(e-1)}{2}$	$\frac{e-1}{2}$	$\frac{e+3}{2}$	1	3	0	1	0	0	1	
$H(/ H)$	1	1	1	1	1	1	1	1	1	1	1

Let M be Table 3 or $4, Q=\left(Q_{1}, Q_{2}, \ldots, Q_{11}\right)$ and
$R=\left(\frac{\left(q^{2}-1\right)}{e\left(e^{2}-1\right)}, \frac{e(q-1)}{e^{2}-1}, \frac{e(q-1)}{e^{2}-1}, 4,4, \frac{q-1}{e-1}, \frac{q+1}{e+1}, \frac{q}{e}, 2,2,1\right)$.
By Theorem 2.6, $M^{T} Q^{T}=R^{T}$. It follows that, $Q=\left(\frac{\left(e^{2}-q\right)\left(e^{4}+e^{3}-e^{2} q+e^{2}+e-q^{2}\right)}{e^{2}\left(e^{2}-1\right)^{2}}, \frac{q-e^{2}}{e^{2}-1}, \frac{q-e^{2}}{e^{2}-1}, 0,0, \frac{q-2 e+1}{2(e-1)}, \frac{q-2 e-3}{2(e+1)}, \frac{q-e}{e(e-1)}, 1,1,1\right)$.
By Theorems 2.6 and 2.1, the subdegrees of this action are displayed in Table 1.

From Table 1, the rank is given by,

$$
\begin{equation*}
R(G)=\frac{e^{5} q-e^{5}+e^{4} q-e^{3} q+e^{3}-4 e^{2} q+2 e^{2}+q^{3}}{e^{2}\left(e^{2}-1\right)^{2}} \tag{7}
\end{equation*}
$$

Acknowledgements. Supported by National Commission for Science, Technology and Innovation; NACOSTI

References

[1] F. Buekenhout, J. D. Saedeleer and D. Leemans, On the rank two geometries of the groups PSL(2,q): part ii. Ars Mathematica Contemporanea, 6 (2013), no. 2, 365 - 388. https://doi.org/10.26493/1855-3974.181.59e
[2] W. S. Burnside, Theory of Groups of Finite Order, Dover Publications, New York, 1911.
[3] P. J. Cameron, Permutation Groups, London Mathematical Society Student Texts. Cambridge University Press, 1999.
[4] P. Cameron, H. Maimani, G. Omidi and B. Tayfeh-Rezaie, 3-designs from $\operatorname{psl}(2, q)$, Discrete Mathematics, 306 (2006), no. 23, 3063 - 3073. https://doi.org/10.1016/j.disc.2005.06.041
[5] L. Dickson, Linear Groups: With an Exposition of the Galois Field Theory, Dover Phoenix Editions. Dover Publications, 1901.
[6] B. Huppert, Endliche Gruppen I, Springer-Verlag, New York-Berlin, 1967. https://doi.org/10.1007/978-3-642-64981-3
[7] A. A. Ivanov, M. K. Klin, S. V. Tsaranov and S. V. Shpektorov, On the problem of computing the subdegrees of transitive permutation groups, Russian Mathematical Surveys, 38 (1983), no. 6, 123-124.
https://doi.org/10.1070/rm1983v038n06abeh003460
[8] I. N. Kamuti, Combinatorial Formulas, Invariants and Structures Associated with Primitive Permutation Representations of PGL(2,q) and PSL(2,q), Diss., University of Southampton, Mathematical studies, 1992.
[9] I. N. Kamuti, Subdegrees of primitive permutation representations of PGL(2,q), East African Journal of Physical Sciences, 7 (2006), 25-41.
[10] O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in Surveys in Combinatorics 2005, London Mathematical Society Lecture Note Series, Cambridge University 29-56, 2005. https://doi.org/10.1017/cbo9780511734885.003
[11] J. S. Rose, A Course on Groups Theory, Cambridge University Press, Cambridge, 1978.

Received: January 5, 2019; Published: January 29, 2019

