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Abstract

The action of projective general group on the cosets of its maximal
subgroups has been studied. For instance, [9] studied the action of G
on the cosets of PGL(2, e) when q is an odd prime power of e. In this
paper, we determine the rank and subdegrees of the action of PGL(2, q)
on the cosets of its subgroup PGL(2, e) for odd q and an even power of
e. We apply the table of marks to achieve this.

Keywords: Rank, Subdegrees, Mark

1 Introduction

Let a group G act transitively on a set X. The orbits of the stabilizer Gα of
a point α ∈ X are called suborbits of G on X. The number R(G) of these
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suborbits is known as the rank of G on X and the suborbits length are known
as the subgegrees of G on X. Rank and subdegrees are independent of the
α ∈ X chosen. Any group G acts transitively on the set of right cosets of
any of its subgroup. In this paper the set X is the set of the right cosets of
H = PGL(2, e) in G = PGL(2, q) where q is an even power of e. In this
paper both q and e represents pi for some prime p and i ∈ Z+. The subgroup
H < PSL(2, q) and therefore H is a proper subgroup of G.

2 Preliminary Notes

Theorem 2.1. [11] Let G be a group acting on set X and OrbG(α) be an
orbit of G containing αinX. Then,

|OrbG(α)| = |G|
|Gα|

. (1)

Theorem 2.2. [4] The following are the subgroups of PGL(2, q) for q odd,

where δ =

{
1, if q ≡ 1mod 4
−1, if q ≡ −1mod 4

:

i. 2 conjugacy classes of cyclic subgroups C2. One class lies in the subgroup
PSL(2, q) and consist of q(q+δ)

2
subgroups. The other class consist of q(q−δ)

2

subgroups.

ii. 1 conjugacy class containing q(q∓δ)
2

conjugate cyclic subgroups Ch (h > 2)
for every h|q ± δ.

iii. 2 conjugacy classes of dihedral subgroups D4. One class lie in the subgroup

PSL(2, q) consisting of q(q2−1)
24

subgroups. The other class consisting of
q(q2−1)

8
subgroups.

iv. 2 conjugacy classes of dihedral subgroups D2h, where h| q±δ
2

and h > 2.

One class lie in the subgroup PSL(2, q) and consist of q(q2−1)
4h

subgroups.

The other class consist of q(q2−1)
4h

subgroups.

v. 1 conjugacy class of q(q2−1)
2h

dihedral subgroups D2d, where q±δ
h

is an odd
integer and h > 2.

vi. q(q2−1)
24

subgroups A4,
q(q2−1)

24
subgroups S4 and q(q2−1)

60
subgroups A5 when

q ≡ −1 mod 10. There is only one conjugacy class of any of these types
of subgroups and all lie in the subgroup PSL(2, q) except for S4 when
q ≡ −3 mod 8.
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vii. 1 conjugacy class containing q(q2−1)
e(e2−1)

conjugate PSL(2, e) where q is a power
of e.

viii. The subgroups PGL(2, e).

ix. The elementary abelian groups Ppr of order pr for every r = 1, 2, . . . , f .

x. Semidirect product of the elementary abelian groups Ppr of order pr for
every r = 1, 2, . . . , f and a cyclic group Ch with h|(q− 1) and h|(pr − 1).

More details on the subgroup structure of PGL(2, q) and PSL(2, q) are also
found in [1], [5], [6] and [10].

Definition 2.3. [2] Let PG be a permutation representation (transitive or
intransitive) of G on X. The mark of the subgroup H of G in PG is the number
of points of X fixed by every permutation of H.

In case G(/Hi) is a coset representation, the mark of Hj in G(/Hi) denoted by
m(Hj, Hi, G) is the number of cosets of Hi in G left fixed by every permutation
of Hj.

Definition 2.4. [7] defined the mark in terms of normalizers of subgroups
of a group as; If Hj ≤ Hi ≤ G and Hj1 , Hj2 , · · · , Hjn is a complete set of
conjugacy class representatives of subgroups of Gi that are conjugate to Hj in
G, then

m(Hj, Hi,G) =
n∑
k=1

|NG(Hjk) : NHi
(Hjk)|. (2)

In particular when n = 1, Hj is conjugate in Hi to all subgroups Hj that are
contained in Hi and conjugate to Hj in G and

m(Hj, Hi, G) = |NG(Hj) : NHi
(Hj)|. (3)

[See [8].]

Definitions 2.3, and 2.4 are all equivalent by [8].

Definition 2.5. Let F1, F2, · · · , Ft be a set of representatives of all distinct
conjugacy classes of subgroups of H in G, ordered such that |F1| ≤ |F2| ≤
· · · ≤ |Ft| = |H|. The table of marks of H is the matrix, M = (mij), where
mij = m(Fj, Fi, H).

Let Qi be the number of suborbits 4j on which the action of H is equivalent
to its action on the cosets of Fi(i = 1, 2, · · · , t). The subdegrees of G acting
on right cosets H are obtained by computing all Qi.

Theorem 2.6. The numbers Qi satisfy the system of linear equations,
t∑
i=j

Qim(Fj, Fi, H) = m(Fj, H,G) (4)

for each j = 1, 2, · · · , t. [See [7].]
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3 Main Results

Lemma 3.1. Suppose m(Fa, H,G) = m(H,H,G), with 1 < a < t, then
Qa = 0. Moreover, if Fa < Fb and Fb 6= H, then Qb = 0.

Proof. Let T be the table of marks of H. All the entries in the last row of
T are 1’s. That is mt j = 1 ∀ j = 1, ..., t. By Theorem 2.6, Qt = m(H,H,G).
Also

Qamaa+Qa+1maa+1 + · · ·+Qt−1mat−1 +Qt = m(Fa, H,G) = m(H,H,G) (5)

⇒ Qamaa +Qa+1maa+1 + · · ·+Qt−1mat−1 = 0 (6)

But mi j ≥ 0, Qj ≥ 0 ∀ i = 1, ..., t, j = 1, ..., t and ma a 6= 0. It follows that
Qa = 0. If Fa ≤ Fb < H, then ma b 6= 0. By Equation (6), It follows that
Qb = 0.

The stabilizer of the coset H is H and the stabilizer of the coset Hg for
some g ∈ G is a conjugate subgroup H0 of H in G. The stabilizer of Hg in H
is H ∩H0. If subgroup Fj in G is not an intersection of H and some conjugate
H0 of H in G, then it cannot be a stabilizer of a coset in H. By Theorem 2.6,
Qj = 0. Such subgroups of H can be eliminated from the table of marks of
H during computation of subdegrees of G acting on the cosets of H. Also, all
the subgroups Fj of H such that Qj = 0 can be eliminated by Lemma 3.1.

Theorem 3.2. Let G = PGL(2, q) act on the cosets of H = PGL(2, e)

where q is odd and an even power of e. Then the rank is e5q−e5+e4q−e3q+e3−4e2q+2e2+q3

e2(e2−1)2

and the subdegrees are as in Table 1 with β = (e2−q)(e4+e3−e2q+e2+e−q2)
e2(e2−1)2

.

Table 1: Subdegrees of G = PGL(2, q) acting on cosets of H = PGL(2, e)
with q odd and even power of e

Suborbit
length:

1 e(e−1)
2

e(e+1)
2

e(e−1) e2−1 e(e+1)
e(e2−1)

2
e (e2 − 1)

No of sub-
orbits:

1 1 1 q−2e−3
2(e+1)

q−e
e(e−1)

q−2e+1
2(e−1)

2 q−e
2

e2−1
β

Proof. we first determine the subgroups F which may result from intersec-
tion of H and a conjugate subgroup H0 in G.

i. Suppose F ∼= H ∩H0 is isomorphic to a cyclic subgroup Cn where n|e±1.
Then it must be an intersection of two maximal cyclic subgroups of H
and H0 containing Cn. The two subgroups have the same order and hence
they intersect either wholly or at identity. Thus n = 1 or e± 1.
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ii. Suppose F ∼= H ∩H0 is isomorphic to a dihedral subgroup D2n where
n|e±1 with n 6= p. Then it must be an intersection of two maximal dihedral
subgroups of H and H0 containing D2n. The subgroup D2n contains n
involutions and a cyclic subgroup Cn. Therefore by i. n = 1, 2 or e± 1.

iii. Suppose F ∼= H ∩H0 is isomorphic to an Abelian subgroup of order pr.
Then F must be an intersection of two maximal Abelian subgroups of H
and H0 containing F . The two subgroups are of the same order e and
therefore intersection is either identity or the whole subgroup. Thus r = 0
or m where e = pm.

iv. Suppose F ∼= H ∩H0 is isomorphic to a semidirect product of a Abelian
group of order pr and a cyclic subgroup Cn where n|e−1. Then it must be
an intersection of two maximal semidirect products of the form PenCe−1

of H and H0 containing F . By i. and iii. F = I or Pe n Ce−1.

The representatives of the distinct conjugacy classes of H to consinder are; I,
C2 (1), C2 (2), D4(1), D4(2), Ce−1, Ce+1, A4, A5, S4, Pe, Pe n Ce−1, D2(e−1),
D2(e+1), PSL(2, pr) and PGL(2, pr), where e = pr. By Theorem 2.2, the
conjugacy class, A5 exists only when e ≡ ±1 mod 10. Next we compute the
marks of F in G(/H) using Theorem 2.2, and Definition 2.4 and display them

in Table 2 where ε =

{
1, if q ≡ 1mod 4
−1, if q ≡ −1mod 4

.

(Note : when e ≡ 1 mod 4 and 4 - a, q−1
2(e−1)

is odd, when e ≡ −1 mod 4 and

4 - a q−1
2(e+1)

is odd. All the other cases where a is even, q−1
e±1

is even.)

Eliminating all subgroups with m (F,H,G) = 1 by use of Theorem 3.1, we are
left with the subgroups I, C2(1), C2(2), D4(1), D4(2), Ce−1, Ce+1, Pe, D2(e−1)

and D2(e+1). Therefore the required table of marks is Table 3 or 4 according
to the nature of e.
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Table 2: Marks of F in G(/H) where G = PGL(2, q), H = PGL(2, e) with q
odd and even power of e

F |NH(F )| |NG(F )| m(F,H,G)

I e (e2 − 1) q (q2 − 1)
q(q2−1)
e(e2−1)

C2(1) 2(e− 1) 2(q − 1) 2e(q−1)
e2−1

C2(2) 2(e+ 1) q − 1 2e(q−1)
e2−1

D4(1) 24
2−ε 24 4

D4(2) 24
2+ε

24 4

Ce−1 2(e− 1) 2(q − 1) q−1
e−1

Ce+1 2(e+ 1) 2(q + 1) q−1
e+1

A4 24 24 1
A5 60 60 1
S4 24 24 1
Pe e(e− 1) q(e− 1) q

e

Pe n Ce−1 e(e− 1) e(e− 1) 1
D2(e−1) 2(e− 1) 4(e− 1) 2
D2(e+1) 2(e+ 1) 4(e+ 1) 2
PSL(2, pr) pr(p2r − 1) pr(p2r − 1) 1
PGL(2, pr) pr(p2r − 1) pr(p2r − 1) 1
H e (e2 − 1) e (e2 − 1) 1

Table 3: Table of marks of H = PGL(2, e) when e ≡ 1 mod 4

I C2(1) C2(2) D4(1) D4(2) Ce−1 Pe Ce+1 D2(e−1) D2(e+1) H
H(/I) e(e2−1)

H(/C2(1))
e(e2−1)

2
e− 1

H(/C2(2))
e(e2−1)

2
0 e+1

H(/D4(1))
e(e2−1)

4
3(e−1)

2
0 6

H(/D4(2))
e(e2−1)

4
e−1
2

e+1 0 2
H(/Ce−1) e(e+ 1) 2 0 0 0 2
H(/Pe) e2 − 1 0 0 0 0 0 e−1
H(/Ce+1) e(e− 1) 0 2 0 0 0 0 2

H(/D2(e−1))
e(e+1)

2
e+1
2

e+1
2

3 1 1 0 0 1

H(/D2(e+1))
e(e−1)

2
e−1
2

e+3
2

0 2 0 1 0 0 1
H(/H) 1 1 1 1 1 1 1 1 1 1 1
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Table 4: Table of marks of H = PGL(2, e) when e ≡ −1 mod 4

I C2(1) C2(2) D4(1) D4(2) Ce−1 Pe Ce+1 D2(e−1) D2(e+1) H
H(/I) e(e2−1)

H(/C2(1))
e(e2−1)

2
e− 1

H(/C2(2))
e(e2−1)

2
0 e+1

H(/D4(1))
e(e2−1)

4
e− 1 e+1

2
2

H(/D4(2))
e(e2−1)

4
0 3(e+1)

2
0 6

H(/Ce−1) e(e+ 1) 2 0 0 0 2
H(/Pe) e2 − 1 0 0 0 0 0 e−1
H(/Ce+1) e(e− 1) 0 2 0 0 0 0 2

H(/D2(e−1))
e(e+1)

2
e+1
2

e+1
2

2 0 1 0 0 1

H(/D2(e+1))
e(e−1)

2
e−1
2

e+3
2

1 3 0 1 0 0 1
H(/H) 1 1 1 1 1 1 1 1 1 1 1

Let M be Table 3 or 4, Q = (Q1, Q2, . . . , Q11) and

R =

(
(q2−1)
e(e2−1)

, e(q−1)
e2−1

, e(q−1)
e2−1

, 4, 4, q−1
e−1

, q+1
e+1

, q
e
, 2, 2, 1

)
.

By Theorem 2.6, MTQT = RT . It follows that,

Q = ( (e
2−q)(e4+e3−e2q+e2+e−q2)

e2(e2−1)2
, q−e

2

e2−1
, q−e

2

e2−1
, 0, 0, q−2e+1

2(e−1)
, q−2e−3

2(e+1)
, q−e
e(e−1)

, 1, 1, 1).

By Theorems 2.6 and 2.1, the subdegrees of this action are displayed in Table
1.
From Table 1, the rank is given by,

R (G) =
e5q − e5 + e4q − e3q + e3 − 4e2q + 2e2 + q3

e2(e2 − 1)2
. (7)
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