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Abstract

In this paper, transitivity, ranks and subdegrees of the action of ex-
ternal direct product of Cyclic and Dihedral group on Cartesian Product
of two sets are determined. The action is proved to be transitive. Also,
it’s established that the rank associated with the action is n( r+1

2 ) and

subdegrees are [1][n] and [2][n(
r−1
2

)] when r is old. Additionally, the rank
of the action for the case where r is even is proved to be n( r+2

2 ) and

subdegrees are [1][2n] and [2][n(
r−2
2

)].
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1 Introduction

The action of G = G1 ×G2 = Cn ×Dr on X × Y is defined by (g1, g2)(x, y) =
(g1x, g2y) ∀ g1 ∈ G1, g2 ∈ G2 and x ∈ X and y ∈ Y . Therefore, this paper
investigates and establishes some results and properties associated with action
of Cn ×Dr on X × Y .

2 Preliminary Results

2.1 Definitions and Theorems

Definition 2.1.1. Suppose G acts on X. Then the set G-orbit also denoted
as OrbG(x) of points gx ∀ g ∈ G is called orbit of G containing x [1].

Definition 2.1.2. Let G act on a finite set X. Then, the stabilizer of a
point x ∈ X in G is the set Gx of all elements in G : gx = x [2].

Definition 2.1.3. Let G act on defined set X transitively. Then suborbits
is the Gx − orbits on X. The number of the Gx − orbits on X is the rank
while the length of each Gx− orbit is the subdegree. The symbol ∆(x), denotes
Gx − orbits [3].

Definition 2.1.4. If for every pair x1, x2 ∈ X ∃ g ∈ G : gx1 = x2. Then
this shows the action possesses one orbit hence transitive [4].

Theorem 2.1.5. Let G = Cn act on set X. Then for each x in X StabG(x)
= {e} [5].

Theorem 2.1.6. Suppose G = Dr acts on set X. Then, StabG(1) =
{e, (2r)(3r−1)(4r−2) . . . ( r

2
r+4
2

)} when r is even and StabG(1) = {e, (2r)(3r−
1)(4r − 2) . . . ( r+1

2
r+3
2

)} when r is odd [5].

Theorem 2.1.7. Suppose G = Cn acts on set X. Then, orbits of StabG(1)
on X are ∆0 = {1}, ∆1 = {2}, ∆2 = {3}, . . . , ∆i = {i+ 1}, . . . , ∆n−1 = {n}
[5].

Theorem 2.1.8. Let G = Dr act on set X. Then, orbits of StabG(1) on
X are ∆0 = {1}, ∆1 = {2, r}, . . . , ∆i = {i + 1, r − i + 1}, . . . , ∆ r

2
= { r

2
+ 1}

when r is even, for r odd the G1 − orbits are ∆0 = {1}, ∆1 = {2, r}, . . . ,
∆i = {i + 1, r − i + 1}, . . . , ∆ r−1

2
= { r+1

2
, r+3

2
} [5].

Theorem 2.1.9. Let G = G1 × G2 act on X × Y . Then OrbG(x, y) =
OrbG1(x) × OrbG2(y) and StabG(x, y) = StabG1(x) × StabG2(y) for (x, y) ∈
X × Y [6].

Theorem 2.1.10. Orbit-Stabilizer Theorem; If G acts on X transitively.
Then for x ∈ X, |Gx| = |G|

|OrbG(x)| [7].
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3 Main Results

3.1 Transitivity of Cn ×Dr on X × Y

Theorem 3.1.1. Let G1 = Cn be a cyclic group generated by (12345 . . . n)
and G2 = Dr be a dihedral group of order 2r. Then, G = G1×G2 = Cn×Dr

acts transitively on X × Y , where X = {1, 2, . . . , n} and Y = {1, 2, . . . , r}.

Proof. By Theorem 2.1.5 and 2.1.6, H1 = StabG1(1) = {I} and H2 = StabG2(1)
a subgroup of order 2 respectively. It follows from Theorem 2.1.9, H =
StabG(1, 1) = StabG1(1) × StabG2(1) = H1 × H2. Thus, by Theorem 2.1.10,

|OrbG(1, 1)| = |G|
|H| = 2nr

2
= |nr| = |X × Y |. This proves the action is transi-

tive.

3.2 Ranks and subdegrees of Cn×Dr on X × Y , where r
is odd.

Theorem 3.2.1. Let G = Cn ×Dr act on X × Y , where X = {1, 2, . . . , n}
and Y = {1, 2, . . . , r}. Then the rank is n( r+1

2
) and subdegrees are [1][n] and

[2][n(
r−1
2

)].

Proof. Let H1 = StabG1(1), H2 = StabG2(1) and H = StabG(1, 1). By The-
orem 2.1.9, H = H1 × H2. Suppose H1 acts on X, then by Theorem 2.1.7,
the H1-orbits are X0 = {1}, X2 = {2}, X3 = {3},. . . , Xn−1 = {n}. Simi-
larly, if H2 acts on Y , by Theorem 2.1.8, H2-orbits are Y0 = {1}, Y1 = {2, r},
Y2 = {3, r−1}, Y3 = {4, r−2}, . . . , Y r−1

2
= { r+1

2
, r+3

2
}. It follows from Theorem

2.1.9, that:

∆0 = OrbH(1, 1) = X0 × Y0 = {1} × {1} = {(1, 1)}. (1)

∆1 = OrbH(2, 1) = X1 × Y0 = {2} × {1} = {(2, 1)}. (2)

∆2 = OrbH(3, 1) = X2 × Y0 = {3} × {1} = {(3, 1)}. (3)

.

.

.

∆n−1 = OrbH(n, 1) = Xn−1 × Y0 = {n} × {1} = {(n, 1)}. (4)

∆n = OrbH(1, 2) = X0 × Y1 = {1} × {2, r} = {(1, 2), (1, r)}. (5)
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∆n+1 = OrbH(2, 2) = X1 × Y1 = {2} × {2, r} = {(2, 2), (2, r)}. (6)

∆n+2 = OrbH(3, 2) = X2 × Y1 = {3} × {2, r} = {(3, 2), (3, r)}. (7)

.

.

.

∆2n−1 = OrbH(n, 2) = Xn−1 × Y1 = {n} × {2, r} = {(n, 2), (n, r)}. (8)

∆2n = OrbH(1, 3) = X0 × Y2 = {1} × {3, r − 1} = {(1, 3), (1, r − 1)}. (9)

∆2n+1 = OrbH(2, 3) = X1 × Y2 = {2} × {3, r − 1} = {(2, 3), (2, r − 1)}. (10)

∆2n+2 = OrbH(3, 3) = X2 × Y2 = {3} × {3, r − 1} = {(3, 3), (3, r − 1)}. (11)

.

.

.

∆α=nj+i = OrbH(i + 1, j + 1) = Xi × Yj = {i + 1} × {j + 1, r − 1}
= {(i + 1, j + 1), (i + 1, r − 1)}. (12)

.

.

.

∆
n

(r+1)
2
−1 = OrbH(n,

r + 1

2
) = Xn−1 × Y r−1

2
= {n} × {r + 1

2
,
r + 2

2
}

= {(n, r + 1

2
), (n,

r + 2

2
)}. (13)

From the above equations;
|∆0| = |∆1| = . . . , = |∆n−1| = 1 and |∆n| = |∆n+1| = . . . , = |∆

n
(r+1)

2
−1| = 2.
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Therefore, the subdegrees are [1][n] and [2][n(
r−1
2

)] and the elements in the H-
orbits are n(1) + 2(nr−n

2
) = n+ (nr−n) = nr = |X×Y |. Therefore, the rank

is n( r+1
2

).

3.3 Ranks and subdegrees of Cn×Dr on X × Y , where r
is even.

Theorem 3.3.1. Let G = Cn ×Dr act on X × Y , where X = {1, 2, . . . , n}
and Y = {1, 2, . . . , r}. Then the rank is n( r+2

2
) and subdegrees are [1][2n] and

[2][n(
r−2
2

)].

Proof. Suppose G = G1 × G2. Let H1 = StabG1(1), H2 = StabG2(1) and
H = StabG(1, 1). By Theorem 2.1.9, H = H1 × H2. Suppose H1 acts on X,
then by Theorem 2.1.7, the H1-orbits are X0 = {1}, X2 = {2}, X3 = {3}, . . . ,
Xn−1 = {n}. Also, if H2 acts on Y , by Theorem 2.1.8, H2-orbits are Y0 = {1},
Y1 = {2, r}, Y2 = {3, r − 1}, Y3 = {4, r − 2}, . . . , Y r

2
= { r+2

2
}. It follows from

Theorem 2.1.9, that:

∆0 = OrbH(1, 1) = X0 × Y0 = {1} × {1} = {(1, 1)}. (14)

∆1 = OrbH(2, 1) = X1 × Y0 = {2} × {1} = {(2, 1)}. (15)

∆2 = OrbH(3, 1) = X2 × Y0 = {3} × {1} = {(3, 1)}. (16)

.

.

.

∆n−1 = OrbH(n, 1) = Xn−1 × Y0 = {n} × {1} = {(n, 1)}. (17)

∆n = OrbH(1, 2) = X0 × Y1 = {1} × {2, r} = {(1, 2), (1, r)}. (18)

∆n+1 = OrbH(2, 2) = X1 × Y1 = {2} × {2, r} = {(2, 2), (2, r)}. (19)

∆n+2 = OrbH(3, 2) = X2 × Y1 = {3} × {2, r} = {(3, 2), (3, r)}. (20)

.

.
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.

∆2n−1 = OrbH(n, 2) = Xn−1 × Y1 = {n} × {2, r} = {(n, 2), (n, r)}. (21)

∆2n = OrbH(1, 3) = X0 × Y2 = {1} × {3, r − 1} = {(1, 3), (1, r − 1)}. (22)

∆2n+1 = OrbH(2, 3) = X1 × Y2 = {2} × {3, r − 1} = {(2, 3), (2, r − 1)}. (23)

∆2n+2 = OrbH(3, 3) = X2 × Y2 = {3} × {3, r − 1} = {(3, 3), (3, r − 1)}. (24)

.

.

.

∆α=nj+i = OrbH(i + 1, j + 1) = Xi × Yj = {i + 1} × {j + 1, r − 1}
= {(i + 1, j + 1), (i + 1, r − 1)}. (25)

.

.

.

∆
n

(r+2)
2
−1 = OrbH(n,

r + 2

2
) = Xn−1 × Y r

2
= {n} × {r + 2

2
} = {(n, r + 2

2
)}.(26)

From the above its clear that;
|∆0| = |∆1| = . . . , = |∆n−1| = 1, |∆n| = |∆n+1| = . . . , = |∆n( r

2
)−1| = 2 and

|∆n( r
2
)| = |∆n( r

2
)+1| = . . . , = |∆

n
(r+2)

2
−1| = 1 .

Therefore, the subdegrees are [1][2n] and [2][n(
r−2
2

)] and the elements in the H-
orbits are (1)(2n) + (2)(nr−2n

2
) = 2n + (nr − 2n) = nr = |X × Y |. Thus, the

rank is n( r+2
2

).

4 Conclusion

From the properties studied in this research it can be concluded that:

1. The action of Cn ×Dr on X × Y is transitive.

2. The rank of the action of Cn ×Dr on X × Y is n( r+1
2

) when r is odd.

3. The rank of the action of Cn ×Dr on X × Y is n( r+2
2

) when r is even.
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