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Abstract

Microtubules are hollow cylindrical protein structures found in all eukaryotic cells, and
essential in several cellular processes, including cell motility, cell division, vesicle traffick-
ing and maintenance of cell shape. The building block of microtubules, tubulin, is one
of the proven targets for anticancer drugs. A microtubule exhibits a remarkable prop-
erty, termed dynamic instability , in which it is able to switch stochastically between two
distinct states. In one state, the microtubule grows while in the other, it shrinks. The
balance between the growing and shrinking states is crucial for the normal functioning of
the cell. One of the interesting questions that cell biologists have pondered over the years
is: what is the biological function of dynamic instability? While some great strides have
been made in answering this question, the details of the precise nature of the mechanism
of dynamic instability in relation to their roles are not well understood. In this thesis
some biologically plausible mathematical models for microtubule dynamics in vitro are
developed. Two of the models are developed with the exclusion of dynamic instability
while the others are with its inclusion. Also considered are two different modes of nu-
cleation of microtubules: saturating and non-saturating mode. The models are analyzed
and numerical simulations conducted, with an aim of mathematically assessing the role of
dynamic instability in the integral microtubule dynamics in vitro. Results indicate that
dynamic instability induces the formation of microtubules from the tubulin subunits, and
that dynamic instability depends on the GTP-tubulin concentration.
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Chapter 1

Biological background

The strange fact about MTs1 is that they form when and where the cells need

them − implying some complex regulation of spatial localization − and that in

many instances they may construct, always at the same speed, extraordinarily

complex assemblies... ([22] pp. 430).

This chapter contains a basic introduction to cell biology. The content is focused on

and constrained to motivating the object of this thesis, namely, an evaluation of the

contribution of nucleation and dynamic instability to the overall microtubule dynamics.

1.1 The cell

The smallest structural unit of living things which, given the right conditions, can function

independently is the cell . There are two major types of cells: prokaryotes and eukaryotes .

Eukaryotic cells are structurally and biochemically more complex than prokaryotic cells.

Prokaryotic cells contain non-membranous organelles and lack a cell nucleus. In contrast,

eukaryotic cells have a nucleus as well as many membrane-bound organelles such as mi-

tochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and vacuoles (see Figure

1.1). Here, we focus on eukaryotes.

The nucleus contains deoxyribonucleic acid (DNA), the repository of genetic instructions

for growth, development and replication. DNA is a polymer made up of four repeat-

ing subunits called nucleotides (A, C, G, and T)2 with specific chemical and structural

1MT: Microtubule
2The letters A, C, G, and T represent the nucleic acid bases adenine, cytosine, guanine, and thymine,

respectively.
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properties, organized into linear structures called chromosomes within the cell nucleus.

Eukaryotic cells reproduce by a complex process of cell division. In somatic (body) cells,

chromosomes go through a process called mitosis , during which, a cell divides into two

genetically identical daughter cells, each identical to the parent cell.

Figure 1.1: Illustration of a eukaryotic cell.

1.2 The cytoskeleton

In addition to the nucleus, nearly all eukaryotic cells have a cytoskeleton, a network

of protein filaments and tubular structures that extends throughout the cytoplasm (the

region of the cell that is between the nucleus and the cell membrane). The cytoskeleton

is a highly dynamic structure that undergoes constant restructuring and modification in

response to environmental stimulations, thus providing a structural framework for the

cell. In addition to playing this structural role, the cytoskeleton plays many roles in

nuclear and cell division, transport, signaling, determination of cell shape and polarity.

It is comprised of three principal types of protein filaments: microtubules , actin filaments

2



(also called microfilaments), and intermediate filaments . Each type of filament is formed

from a different protein subunit: actin for actin filaments, tubulin for microtubules, and

a family of related fibrous proteins, such as vimentin or cytokeratin, for intermediate

filaments [2]. In this work, we will focus on the microtubules, with a view to understand

the significance of the key components in the in vitro assembly-disassembly dynamics of

a microtubule. In particular, the significance of a unique microtubule behaviour, known

as dynamic instability , in the overall microtubule dynamics will be examined.

1.3 The microtubules

Microtubules are hollow cylinders with an outer diameter of about 25 nm (nanometers3),

inner diameter of about 15 nm, and a varying overall length, ranging from 200 nm to

25 µm [22, 72]. They are composed primarily of the protein tubulin. Each tubulin is

found as a heterodimer, consisting of two similar, but not identical monomers, called α-

and β-tubulin each of molecular weight of about 55 kilodaltons4 (kDa) [22, 62, 72, 73].

Each αβ-tubulin heterodimer is about 4nm in diameter and 8nm long [2]. The α- and

β-tubulin in a heterodimer are tightly bound together by noncovalent bonding, so that

the heterodimer, under normal conditions, rarely dissociates into individual α- and β-

tubulin monomers [51]. Each heterodimer contains two guanine nucleotide-binding sites:

an exchangeable site (E-site) at the β-tubulin end, occupied by either energy-rich guano-

sine 5′-triphosphate (GTP) or guanine 5′-diphosphate (GDP), and a nonexchangeable site

(N-site) between the α- and β- monomers, occupied by GTP [72]. The heterodimer with

GTP bound to the β-tubulin subunit is referred to as a GTP-tubulin heterodimer. If

GDP binds to the β-tubulin subunit, the resulting heterodimer is refered to as a GDP-

tubulin heterodimer. From now on, we shall simply use the term “dimer” as a short for

heterodimer. The GTP at the N-site is tightly bound, and cannot be removed without

325 nm = 2.5× 10−5 mm
4A “Dalton” (Da) is a measure of molecular weight or mass. 1 Dalton corresponds to one-twelfth the

mass of a Carbon−12 atom; 1Da≈ 1.66× 10−24g
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denaturing the dimer, while the GTP at the E-site is freely exchangeable with unbound

GTP [43].

Microtubules are formed by the self assembly of the GTP-tubulin dimers [18, 21, 58, 72]

in the presence of additional GTP and magnesium ions (Mg2+) and at 37oC [43]. The

dimers bind in a head-to-tail fashion (αβαβ) forming linear units known as protofila-

ments (Figure 1.2). In general, each microtubule is composed of thirteen protofilaments,

which interact laterally (i.e., side-by-side) to form the hollow tubule − the microtubule

[18, 21, 72, 73] (Figure 1.2).

Figure 1.2: Microtubule structure. Each tubulin is found as a heterodimer , consisting
of two similar, but not identical monomers, called α- and β-tubulin monomer. The
heterodimers bind in a head-to-tail fashion forming the protofilaments . In general, each
microtubule is composed of thirteen protofilaments, which interact laterally (i.e., side-by-
side) to form the hollow tubule − the microtubule.

The head-to-tail orientation of dimers in the microtubule lattice results in an intrinsic

structural polarity between the two ends of the microtubule: one end exposes only α-

tubulin subunits, and the other only β-tubulin subunits. The end which starts with

β-tubulin is called the plus end, while the end that starts with α-tubulin is called the

minus end of the microtubule [18, 36, 47]. The rate at which polymerization takes place

at the two ends is different, with the plus end growing much faster than the minus end [2,

18, 58, 81]. In most eukaryotic cells, the microtubule minus ends are embedded within the

microtubule-organizing centre (MTOC) where initiation5 of new filaments occurs, whilst

5Initiation of new filaments is usually referred to as nucleation.
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the plus ends grow into the cytoplasm [2, 81]. During polymerization (assembly) of dimers

to the ends of microtubules, the GTP at the E-site is hydrolyzed to GDP and the resulting

GDP is unable to exchange. The result is that the body of the microtubule is made

up of GDP-tubulin subunits that energetically favour depolymerization (disassembly)

[61, 72]. When the microtubule disassembles (depolymerizes), the dimers are released

and the GDP at the E-site is now able to exchange to GTP. In contrast, the GTP bound

at the N-site is non-exchangeable and is not hydrolyzed to GDP during the addition

of dimers to the ends of microtubules [18]. This unique GTP binding and hydrolysis

properties at the E- and N-sites strongly influence the dynamic behaviour of microtubules.

Microtubules undergo two interesting kinds of dynamics: dynamic instability [58] and

treadmilling [53]. The former is a process in which individual microtubule ends switch

abruptly and stochastically between periods of growth and shortening, while the latter

is the net assembly at one microtubule end and the net disassembly at the opposite

end with no net change in microtubule length. Treadmilling and dynamic instability

are compatible behaviours, and a specific microtubule population can show primarily

treadmilling behaviour, dynamic instability behaviour, or some mixture of both [44]. We

now discuss each of these in greater detail in turn.

1.3.1 Dynamic instability

When observed in vivo, microtubules display a remarkable phenomenon. They rapidly

grow toward the cell periphery at a constant rate for some period and then suddenly

shrink rapidly back towards the centrosome [2, 22]. The microtubules may shrink partially

and then recommence growing, or they may disappear completely, to be replaced by a

different microtubule [2]. Thus in a population of microtubules, at any point in time,

a subset of microtubules are rapidly growing while others are quickly shrinking [14].

Both states are known to coexist under identical conditions of tubulin availability. The

random alternation between the two states is known as dynamic instability [58]. The

transition from growth to shrinkage is termed a ‘catastrophe’ , while the reverse reaction

5



− the transition from shrinking to growing − is referred to as a ‘rescue’ [82]. Dynamic

instability has also been observed in vitro [34, 58, 82]. To characterize dynamic instability,

typically four parameters have been used in previous analyses: rate of polymerization,

rate of depolymerization, frequency of catastrophe, and frequency of rescue [19, 26].

Dynamic instability is an energy-requiring phenomenon and is believed to be a function

of GTP hydrolysis [58]. The most widely accepted model to explain dynamic instability

is the “GTP cap” model [18, 48, 58]. During microtubule assembly, according to this

model, the α-tubulin part of the dimer binds to the β-tubulin at the microtubule plus

end. This binding triggers hydrolysis of β-tubulin-bound GTP (GTP-tubulin) to GDP

(GDP-tubulin) [24]. A GDP-tubulin at the tip of a microtubule will fall off, while a GDP-

tubulin in the middle of a microtubule will not. If non-hydrolyzable GTP is incorporated

in the E-site of β-tubulin, the affected subunits will remain in the GTP-bound form

after they polymerize into microtubules. The normal hydrolysis of GTP to GDP by the

polymerized tubulin subunits renders the microtubule inherently unstable because the

GDP-bound form makes the protofilaments curve slightly [61]. Since tubulin adds onto

the end of the microtubule only in the GTP-bound state, there is generally a “cap” of

GTP-tubulin at the tip of the microtubule, protecting it from disassembly. The stochastic

shrinking and growing of microtubules is thus ascribable to random loss and regain of

this cap. When hydrolysis takes place at the tip of the microtubule, the microtubule

begins a rapid depolymerization and retraction. GTP-bound tubulin can begin adding

to the tip of the microtubule again, providing a new cap and protecting the microtubule

from shrinking. A catastrophe occurs when the GTP cap is lost allowing GDP-tubulin

to dissociate. A rescue, on the other hand, is proposed to occur when a shrinking end is

recapped with GTP-tubulin [18].

1.3.2 Treadmilling

This is the net gain of tubulin subunits at the plus end of a microtubule and an equivalent

net loss from the minus end, producing a net flux of subunits through the microtubule.

6



Thus, the net polymerization at the plus end balances the net depolymerization at the

minus end [53, 58]. Two models have been proposed in an attempt to understand the

mechanism of treadmilling − the Wegner model and the differential dynamic instability

model [28, 82]. The former model [84], initially proposed for actin filament assembly,

assumes that there is no GTP cap at the microtubule ends, that only GDP-tubulin sub-

units would dissociate from the microtubule, and that there is only one single continuous

phase of assembly of GTP-tubulin and disassembly of GDP-tubulin taking place at a

given microtubule end. Upon polymerization of tubulin subunit at the microtubule end,

GTP hydrolysis allows the critical tubulin concentrations for growth at opposite ends

to be different. If the dimer pool concentration is at an intermediate value between the

critical concentrations of the two ends, the end with the lower critical concentration will

persistently grow while the end with the higher critical concentration will persistently

shorten [53]. However, this theory has been contested from several points of view (see,

for example, [82]). The differential dynamic instability model for treadmilling posits that

for microtubule ends capable of dynamic instability, differences in the contributions of the

assembly and disassembly phases between the two ends offer an alternative way to bias

one end into net growth while the other end is biased into net shrinkage at steady-state

assembly. Treadmilling will occur if the growth phase is dominant at one end while the

shortening phase is dominant at the other end [28].

1.3.3 Mechanisms of microtubule assembly in vitro

In vitro, microtubule assembly proceeds in two phases, a nucleation phase followed by an

elongation (growth) phase [18, 80]. During the nucleation phase, new microtubule ends

are spontaneously generated from the dimers [41, 80]. Once the preformed microtubule

nuclei (or seeds) are large enough to be stable, assembly of dimers onto the ends produces

elongation [80]. The formation of the initial nuclei is energetically less favourable than the

subsequent addition of dimers to the growing microtubule and, consequently, nucleation

becomes negligible once elongation commences [52]. The elongation phase continues until

7



the dimer pool is reduced to the concentration in equilibrium with microtubules (critical

concentration) [52, 80].

1.3.4 Functions of microtubules

While evidence concerning the cellular functions of microtubules is largely circumstantial

[72], it is generally accepted that microtubules fulfill important functions in addition to

the maintenance of the physical architecture of the cell [36, 44, 63, 73].

During cell division (mitosis), microtubules rearrange themselves into an array of fibres,

called the mitotic spindle [22, 73]. It is this spindle that eventually pulls each set of

chromosomes to opposite ends of the cell, ensuring accurate distribution of the genetic

material to each daughter cell. Microtubules are also directly involved with the movement

of chromosomes during cell division [22, 63].

Microtubules are the main components of the complex and highly organized axonemal

structures found in cilia and flagella − hairlike structures projecting from the cell surface

[22, 73, 77]. In vertebrates, the respiratory tract is lined with cilia that keep potentially

harmful microorganisms from entering the lungs. The sperm tail (flagellum), on the

other hand, propels the sperm cell in a vigorous forward motion through the seminal

fluid, enabling the sperm penetrate the female egg in order to fertilize it [73].

Microtubules play an important role in intracellular trafficking of vesicles and organization

of organelles by providing the tracks along which motor proteins, such as kinesin and

dynein superfamily proteins, convey their cargoes [2, 36].

Microtubules are also involved in the transmission of nerve impulses (signal transduction)

[5, 36, 63], and protein and hormone secretion [72, 73].

1.3.5 Diseases related to microtubule malfunction

Although each cell in the body maintains itself and carries out its specific function, it is

part of a large colony of collaborating cells that constitute the whole organism. A cell

8



communicates with its surrounding cells by releasing chemical messages, through a process

called signal transduction. The defining characteristics of malignant tumours (commonly

referred to as “cancer”) are abnormal, excessive and inappropriate cellular proliferation,

invasiveness and ability to form secondary tumours. A hyperplastic (cancerous) cell will

stimulate neighbouring cells to grow by secreting growth factors. As they proliferate,

hyperplastic cells disrupt the normal function of surrounding tissues, leading to eventual

organ failure and death. As noted in Section 1.3.4, the process of chromosome segregation

during cell division is mediated by the mitotic spindle, which is composed primarily of

microtubules. This role of microtubules has been exploited by cancer chemotherapists to

develop drugs that are not only effective for cancer treatment, but have minimal effects

on non-cancerous cells (a review can be found in, for example, [44]). The drugs are so

designed as to disrupt microtubule assembly − prevent polymerization and/or promote

depolymerization. For example, the drug paclitaxel (taxol), used in the treatment of

cancer [44], blocks dynamic instability by stabilizing GDP-tubulin in the microtubule.

Thus, even when hydrolysis of GTP reaches the tip of the microtubule, there is no

depolymerization and the microtubule does not shrink back. Another drug Colchicine

has the opposite effect: it blocks the polymerization of tubulin into microtubules.

Elsewhere, microtubules are actively involved in the growth and maintenance of the

axon [5]. Here, microtubule assembly plays an important role: when growing axons

are treated with microtubule depolymerizing drugs, the axons stop growing and retract

(reviewed in [5]); while compounds that promote neurite growth also promote microtubule

assembly. Therefore, understanding how microtubules assemble can lend valuable insight

into important medical problems such as the treatment of cancer and neurodegenerative

diseases.

9



1.4 Motivation

Since the discovery of microtubule dynamic instability in 1984 [58], cell biologists have

been actively studying the role of this unique behaviour in biological functions of mi-

crotubules. Dynamic instability, for example, is known to provide the mechanism for

the recycling of microtubules in the mitotic spindle [24]. While several hypotheses at-

tempting to ascribe roles to dynamic instability have been advanced (for a review see,

for example, [24]), details of the precise nature of the mechanism of dynamic instability

in relation to these roles remain sketchy. A comprehensive model for the mechanism of

dynamic instability would require a detailed study of all the key processes in microtubule

assembly and disassembly dynamics. This work aims at providing some insight into the

impact of dynamic instability on the assembly-disassembly dynamics of microtubules in

vitro. We hope to mathematically evaluate the contribution of nucleation and dynamic

instability in the assembly-disassembly dynamics of microtubules. We’ll take a compara-

tive approach and explore the dynamics of microtubules with the inclusion and exclusion

of dynamic instability.

1.5 Thesis outline

The remainder of this thesis consists of five more chapters, organized as follows. Chapter

two provides some mathematical background on dynamical systems analysis. A review

of sensitivity analysis in modelling is also considered. Chapter three contains a review of

some previous microtubule dynamics models. Chapter four and Chapter five describe the

core of our own research work. In Chapter four, we describe the proposed microtubule

dynamics models while in Chapter five, we analyze these models and give a discussion of

this analysis. Finally, Chapter six provides conclusions and suggestions for future work.

10



Chapter 2

Mathematical preliminaries

This chapter reviews a few mathematical preliminaries usually required in the analysis of

the behaviour of a generic dynamical system. Different notions of stability of equilibrium

solutions of a dynamical system and related theorems are described.

2.1 Introduction to dynamical systems

Dynamical systems theory provides the mathematical tools for analyzing and describing

systems that change over time. Informally, a dynamical system is a rule that determines

how a system evolves over time. The rule determines what the state xxxt is at a later time

t given an initial condition or “state” xxx0.

Definition 2.1.1. [7] A dynamical system is a triple {T ,X ,φφφt}, consisting of an

ordered time set T , a state (or phase) space X , and an evolution operator φφφt : X −→ X
that transforms an initial state xxx0 ∈ X at time t0 ∈ T to another state xxxt ∈ X at time

t ∈ T .

The time set T may be continuous or discrete. The state space X may be continuous

or discrete or a hybrid of the two, and it may be finite or infinite-dimensional depending

on the number of variables required to fully describe the state of the system. φφφt may be

given explicitly or defined implicitly, it may be deterministic or stochastic, and it satisfies

11



the following properties1 [65]:

(i) φφφ0 is the identity operator; that is, φφφ0(xxx) = xxx, ∀ xxx ∈ X ;

(ii) φφφt+s(xxx) = φφφt (φφφs(xxx)) , ∀ xxx ∈ X , t, s ∈ T .

Remark. If φφφ satisfies (i) and (ii), it is said to have the semigroup property.

In the discrete-time case, a dynamical system can be expressed as

xxx(t + 1) = fff(xxx(t)),

where xxx(t) is the state of the system at time t, and fff is called the map of the system. For

a given initial condition, the iterates of the mapping fff will yield a state-space trajectory .

On the other hand, the evolution of a continuous dynamical system (also referred to as a

flow) can mathematically be described by a number of different formalisms. One of the

simplest of such formalisms is a set of first-order nonlinear ordinary differential equations

(ODEs)

dxxx(t)

dt
= fff(xxx(t), t).

The vector field fff assigns an instantaneous direction and magnitude of change at each

point in the state space. Starting from some initial state xxx0, the sequence of states

generated by the action of the dynamics is called a solution trajectory or orbit . A solution

trajectory has the property that its tangent at each point is given by the vector field at

that point. The set of all possible solution trajectories graphically illustrates the action

of the evolution operator φφφt [7].

Often, the long-term behaviour of dynamical systems is of special interest. Over time, the

state of many dynamical systems eventually ends up in a small subset of the state space

called a limit set [7]. A limit set is invariant with respect to the dynamics of the system

it represents, in the sense that if the system’s state reaches a limit set, the dynamics will

act to keep it there indefinitely [7]. Two simple types of limits sets are equilibrium points

and limit cycles . An equilibrium point is a point in the system’s phase space where the

1For simplicity, φφφ(·, t) is being denoted by φφφt(·)
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system’s state does not change with time. On the other hand, a limit cycle is a closed

trajectory such that once in cycle, the trajectory will repeat infinitely. An equilibrium

point, and more generally, a limit set, can be stable or unstable. For a stable equilibrium

point, the system trajectories can be kept arbitrarily close to the equilibrium point by

starting sufficiently close to it. A limit set is said to be unstable if it is not stable. Formal

definitions of these and other terms in dynamical systems will appear in the next section.

2.2 Some qualitative properties of dynamical systems

In the real world, most dynamical systems are nonlinear. Such a system can sometimes

be represented by a set of first-order nonlinear ODEs in the form

ẏyy(t) = g(yyy(t), t), yyy ∈ S ⊂ Rn, t ∈ R+, (2.1)

where g : R+×S −→ Rn is a vector field, and ẏyy(t) = dyyy(t)
dt

. These equations describe the

time evolution of the variables and the system they represent.

Definition 2.2.1. A function g : Rn −→ Rm is said to be continuous at a point

yyy ∈ S ⊂ Rn if for every ε > 0, there exists a δ(ε) > 0 such that

||yyy − zzz|| < δ ⇒ ||g(yyy)− g(zzz)|| < ε.

If g is continuous at every point in its domain then g is said to be continuous.

Remarks. A function g defined on a domain S is said to be Ck-continuous (or k

times continuously differentiable, or of class Ck), k ∈ Z+, (and we write g ∈ Ck(S)) iff

all the partial derivatives of g of order less than or equal to k exist and are continuous

functions on S. In particular, g ∈ C1(S) in yyy iff g is continuous and all the first partial

derivatives

∂gi(yyy, t)

∂yj

, i, j = 1, · · · , n
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exist and are continuous on S. In this case (that is g ∈ C1(S)), we say that g is contin-

uously differentiable in yyy on S. Conventionally, we say that g is C0 if g is continuous.

Definition 2.2.2. A function ggg : Rn −→ Rm is said to be piecewise continuous on a

finite interval S ⊂ Rn if

(a) ggg is continuous on S except for a finite number of points of discontinuity, and

(b) ggg has finite right-hand and left-hand limits at each point of discontinuity.

A function is piecewise continuous on an infinite interval if it is piecewise continuous on

every finite subinterval.

Definition 2.2.3. [31] Let E ⊆ Rn × R be an open set and consider the dynamical

system (2.1). Denote the time interval for which (2.1) is defined as I ⊆ R. A function

yyy : I −→ Rn is said to be a solution of (2.1) on I if yyy is a continuously differentiable

function defined on I, (yyy(t), t) ∈ E , t ∈ I and yyy(t) satisfies (2.1) ∀ t ∈ I. We refer to

g as a vector field on E. Suppose (yyy0, t0) ∈ E is given. An initial value problem

(IVP) for Eq. (2.1) consists of finding an interval I containing t0 and a solution yyy of

(2.1) satisfying yyy(t0) = yyy0. We write this problem symbolically as

ẏyy(t) = g(yyy(t), t), yyy(t0) = yyy0, t ∈ I. (2.2)

If there exists an interval I containing t0 and a yyy satisfying (2.2), we refer to this as a

solution of (2.1) passing through (yyy0, t0) [31]. In other words, an IVP consists in finding

the trajectory ϕϕϕt passing through a given initial state (yyy0, t0). The graph of ϕϕϕt is the

curve ΓΓΓ lying in the region E ⊂ Rn+1, where each point of the curve has the coordinate

(ϕϕϕt, t) and where the tangent to ΓΓΓ at each point is represented by g(ϕϕϕt, t).

When considering the IVP (2.2), two questions are of fundamental interest:

(i) Does a solution to the problem always exist?

(ii) If a solution exists, is it unique?
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The first question is addressed in Cauchy-Peano’s existence theorem, stated next.

Theorem 2.2.4 (Cauchy-Peano existence theorem [31]). Let E ⊆ Rn×R be an open set

and consider the dynamical system (2.1). If the function g : E −→ Rn is continuous in

E, then for any (yyy0, t0) ∈ E , system (2.1) has a solution ϕϕϕ in Rn satisfying ϕϕϕ(t0) = yyy0.

Corollary 2.2.5. [31] If U is a compact set of E, U ⊂ V, an open set in E with the

closure V̄ of V in E, then there is an α > 0 such that, for any initial value (yyy0, t0) ∈ U ,

there is a solution to the IVP (2.2), which exists at least on the interval [t0−α, t0 + α].

For the second question, on the uniqueness of solutions of (2.2), an additional hy-

pothesis must be imposed on Theorem 2.2.4; namely, local Lipschitz hypothesis. The

following definition characterizes the notion of Lipschitzness of a function.

Definition 2.2.6. Let E ⊆ Rn × R be an open set. A function g : E −→ Rn is said to

be locally Lipschitz in yyy(t) (or with respect to yyy(t)) if for every compact set ΩΩΩ ⊆ E ,

there exists a positive constant L = LΩΩΩ such that for all t ∈ R, and any yyy1(t), yyy2(t) ∈ Rn

satisfying (yyy1(t), t), (yyy2(t), t) ∈ ΩΩΩ, we have

||g(yyy1(t), t)− g(yyy2(t), t)|| ≤ LΩΩΩ||yyy1(t)− yyy2(t)||. (2.3)

If the Lipschitz condition (2.3) holds for all yyy1(t), yyy2(t) ∈ Rn, t ∈ R+, then g is said to

be globally Lipschitz (with respect to yyy(t)).

Remark. The constant LΩΩΩ in (2.3) is called a Lipschitz constant for g.

The following Lemma implies that a continuously differentiable function is locally Lips-

chitz.

Lemma 2.2.7. [33] Let E ⊆ Rn+1 be open. If the function g : E −→ Rn is C1 in yyy, then

g is locally Lipschitz in yyy.
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Theorem 2.2.8 (Picard-Lindelöf theorem [31, 33]). Let E ⊆ Rn+1 be an open set and

consider the dynamical system (2.1). If the function g : E −→ Rn is continuous in E and

locally Lipschitz with respect to yyy(t) in Rn, then for any (yyy0, t0) ∈ E, system (2.1) has a

unique solution ϕϕϕ in Rn satisfying ϕϕϕ(t0) = yyy0.

Dynamical systems are classified as autonomous and non-autonomous, based on the

independence or dependence of the system on the time variable.

Definition 2.2.9 (Autonomous system). The nonlinear system (2.1) is said to be au-

tonomous if g does not depend explicitly on time t; i.e., if the system’s state equations

can be written as

ẏyy = g(yyy).

Otherwise, the system is called non-autonomous.

Remark. When (2.1) is autonomous, the domain of g in (2.1) is of dimension n,

otherwise it is of dimension (n + 1).

Definition 2.2.10 (Equilibrium point). Consider the dynamical system (2.1). A point

yyy∗ ∈ S is said to be an equilibrium point of (2.1) if

g(yyy∗, t) = 0, ∀ t ≥ 0.

An equilibrium point yyy∗ has the property that for any t ≥ t0 > 0, if the state of the

system starts at yyy∗, it will remain at yyy∗ for all future time.

We now present the basic notions of stability of equilibria of dynamical systems. Roughly

speaking, an equilibrium point yyy∗ is Lyapunov stable if any trajectory that starts suf-

ficiently close to yyy∗ stays arbitrarily close to yyy∗ for all future time. Lyapunov stability

does not, however, imply asymptotic stability. An equilibrium point yyy∗ is asymptotically

stable if it is Lyapunov stable and, in addition, any trajectory starting close to yyy∗ ul-

timately converges to yyy∗ as time progresses. Both Lyapunov stability and asymptotic

stability of an equilibrium point are local, in the sense that they are expressed in terms
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of a neighbourhood of a given initial condition. A stronger notion of stability - global

asymptotic stability- exists. An equilibrium point yyy∗ is globally asymptotically stable if

all trajectories regardless of starting point (initial condition) will converge to yyy∗ as time

approaches infinity. Formal definitions of these notions of stability are now given.

Definition 2.2.11 (Stability of non-autonomous systems [30, 46]). Consider the nonlin-

ear dynamical system (2.1) where ggg : S×R+ −→ Rn is locally Lipschitz in yyy and piecewise

continuous in t. Let ϕϕϕt be the solution of (2.1) at time t corresponding to the initial condi-

tion ϕϕϕt0 = yyy0. Let yyy∗ ∈ S be an equilibrium point of (2.1); i.e., ggg(yyy∗, t) = 0, ∀ t ≥ t0 ≥ 0.

Then, yyy∗ is said to be

· stable in the sense of Lyapunov (or Lyapunov stable, or locally stable) if for

any given t0 ≥ 0 and ε > 0, there exists a δ > 0 (depending on ε and t0) such that

||ϕϕϕt0 − yyy∗(t0)|| < δ ⇒ ||ϕϕϕt − yyy∗(t)|| < ε, ∀ t ≥ t0 ≥ 0.

· unstable if it is not Lyapunov stable.

· asymptotically stable if it is stable in the sense of Lyapunov, and for each t0 ≥ 0

there exists a positive constant δ1 = δ1(t0) such that

||ϕϕϕt0 − yyy∗(t0)|| < δ1 ⇒ lim
t→∞

||ϕϕϕt − yyy∗(t)|| = 0.

· globally asymptotically stable if it is stable in the sense of Lyapunov, and

lim
t→∞

||ϕϕϕt − yyy∗(t)|| = 0, ∀ ϕϕϕt0 ∈ S, t0 ≥ 0.

Now let yyy∗(t) be the equilibrium solution of (2.1) with yyy∗(0) = yyy0 and consider a

perturbation of the initial condition of (2.1) so that yyy(0) = yyy0 + δyyy0. If we now replace

yyy(t) by a new variable xxx(t) = yyy(t)−yyy∗(t), and noting that both yyy∗(t) and yyy(t) are solutions
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of (2.1), then xxx(t) satisfies the following non-autonomous differential equation:

ẋxx = ggg(yyy∗(t) + xxx, t)− ggg(yyy∗(t), t) ≡ fff(xxx, t)

with initial condition xxx(0) = δyyy(0) ≡ xxx0. Since fff(0, t) = 0 for every t ∈ R, the new

dynamical system,

ẋxx = fff(xxx, t) (2.4)

has an equilibrium point at the origin of the state space. Therefore, instead of studying

the deviation of yyy(t) from yyy∗(t) for system (2.1), we may simply study the pertubation

dynamics of (2.4) with respect to the equilibrium point 0.

Consequently, we summarize the above definitions of stability using the origin as the

equilibrium point for a time-invariant dynamical system.

Definition 2.2.12 (Stability of autonomous systems [30, 46]). Consider the autonomous

dynamical system

ẋxx(t) = fff(xxx), xxx ∈ D ⊆ Rn, t ∈ R+ (2.5)

where fff : D −→ Rn is locally Lipschitz in xxx and piecewise continuous in t. Let φφφ(t) be

the solution of system (2.5) at time t corresponding to the initial condition φφφ(0) = xxx0.

Assume that xxx∗ = 0 is an equilibrium point of (2.5); i.e., fff(0) = 0. Then, xxx∗ = 0 is

· Lyapunov stable if, for each ε > 0, there exists a δ = δ(ε) > 0 such that

||φφφ(0)|| < δ ⇒ ||φφφ(t)|| < ε, ∀ t ≥ 0.

· unstable if it is not Lyapunov stable.

· asymptotically stable if it is Lyapunov stable, and there exists a δ1 > 0 such that

||φφφ(0)|| < δ1 ⇒ lim
t→∞

||φφφ(t)|| = 0.

· globally asymptotically stable if it is Lyapunov stable and

lim
t→∞

||φφφ(t)|| = 0, ∀ φφφ(0) ∈ D.
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Definition 2.2.13. Let φφφt be the solution of system (2.5) at time t corresponding to the

initial condition φφφt0 = xxx0. Then

· the forward (or positive) orbit of (through) xxx is the set

O+(xxx) = {φφφt(xxx) : t ≥ 0};

· the backward (or negative) orbit of (through) xxx is the set

O+(xxx) = {φφφt(xxx) : t ≤ 0};

· the orbit of (through) xxx is the union of forward and backward orbits:

O(xxx) = O+(xxx) ∪O−(xxx).

Remark. In defining a backward orbit in Definition 2.2.13, we are assuming that

system (2.5) is defined for t ∈ R so that trajectories can evolve backwards in time.

Definition 2.2.14. [65] A point ppp ∈ D ⊆ Rn is called an ω-limit point of the solution

φφφt of the dynamical system (2.5) iff there is a sequence {tn}∞n=0, with tn →∞ as n →∞,

such that φφφtn → ppp as n → ∞. Similarly, if there is a sequence {tn}∞n=0, with tn → −∞
as n →∞, such that lim

n→∞
φφφtn = qqq, and a point qqq ∈ D ⊆ Rn, then qqq is called an α-limit

point of the solution φφφt of (2.5). The set of all ω-limit points of a trajectory φφφt is called

the ω-limit set of φφφt. The set of all α-limit points of a trajectory φφφt is called the α-limit

set of φφφt. The set of all limit points of φφφt is called the limit set of φφφt.

Theorem 2.2.15. [65] The α- and ω-limit sets of a trajectory φφφt of (2.5) are closed

subsets of D and if φφφt is contained in a compact subset of Rn, then the α- and ω-limit

sets of φφφt are non-empty, compact, connected subsets of D.

Definition 2.2.16. A set S ⊆ D ⊆ Rn is said to be

- forward invariant with respect to the dynamical system (2.5) if for any xxx0 ∈ S,

there is a t0 such that φφφt(xxx0) ≡ φφφ(t; t0,xxx0) ∈ S, ∀ t ≥ t0,
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- backward invariant with respect to the dynamical system (2.5) if for any xxx0 ∈ S,

there is a t0 such that φφφt(xxx0) ∈ S, ∀ t ≤ t0,

- invariant if it is both forward and backward invariant.

Remark. Simply put, a set S is an invariant set for system (2.5) if every trajectory

φφφt starting from a point in S will remain in S for all times (that is, xxx0 ∈ S ⇒ φφφt(xxx0) ∈
S, ∀ t ∈ R).

2.3 Stability analysis

Stability analysis of equilibrium solutions is a fundamental and important problem in

establishing the qualitative behaviour of dynamical systems. In this section, a review of

commonly used techniques in stability analysis is considered.

2.3.1 Lyapunov’s first (indirect) method

In the Lyapunov’s first method, the strategy is to make a Taylor series expansion of (2.5)

in the neighbourhood of an equilibrium solution xxx∗ of (2.5), and approximate the vector

field by the linear part of this expansion. Consider the nonlinear dynamical system (2.5)

where xxx ∈ D ⊆ Rn, and fff(xxx) is continuously differentiable. Let xxx∗ be an equilibrium

solution of (2.5); that is, fff(xxx∗) = 000. The Jacobian matrix of system (2.5) is given by

J(xxx) = ∂fff
∂xxx

(xxx), with the (i, j)th entry

Jij(xxx) =
∂ẋi(xxx)

∂xj

≡ ∂fi(xxx)

∂xj

, i, j = 1, . . . , n.

Consider a small perturbation, zzz = xxx− xxx∗, around xxx∗. Then,

dzzz

dt
=

d

dt
(xxx− xxx∗) =

dxxx

dt
= fff(xxx).
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The Taylor series expansion of fff(xxx) around xxx∗ is given by

fff(xxx) = fff(xxx∗) + fff ′(xxx∗)(xxx− xxx∗) +O (|xxx− xxx∗|2)

= fff ′(xxx∗)(xxx− xxx∗) +O (|xxx− xxx∗|2) (since fff(xxx∗) = 0)

≈ J∗zzz, where J∗ =
∂fff

∂xxx
(xxx)

∣∣∣∣
xxx=x∗

That is, for a small perturbation zzz, only the first term in the above expansion is

significant, since the higher order terms involve powers of the small perturbation from

the equilibrium solution xxx∗. The time evolution of our new variable, zzz will then be

governed by the linearized system

żzz = J∗zzz (2.6)

The new system (2.6) is referred to as the linearization (or linear approximation) of the

nonlinear dynamical system (2.5) at the equilibrium point xxx∗. Note that since J∗ is a

constant matrix, (2.6) is an autonomous linear differential equation2 whose solution is

given by

zzz(t) = exp(J∗t)zzz0, t ≥ 0,

where zzz0 is the initial condition of (2.6) at t = 0. The stable and centre manifold theorems

establish the relationship between the nonlinear system (2.5) and its linearization (2.6).

Theorem 2.3.1 (Stable Manifold Theorem [65]). Let fff ∈ C1(D) where D is an open

subset of Rn containing the origin, and let φφφt be the flow of the nonlinear system (2.5).

Suppose that xxx∗ = 0 is an equilibrium solution for (2.5), and that A = ∂fff
∂xxx

(xxx)
∣∣∣
xxx∗=0

has k

2The solution, xxx(t), of a continuous-time autonomous linear dynamical system

ẋxx = Axxx, xxx(0) = xxx0, xxx ∈ Rn, A ∈ Mn(R), t ∈ R+

is given by
xxx(t) = eAtxxx0, t ≥ 0,

where eAt = I +
∑∞

k=1
tk

k!A
k.
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eigenvalues with negative real part and n− k eigenvalues with positive real part. Then

· there exists a k-dimensional differentiable manifold S tangent to the stable subspace

Es of the linear system

ẋxx = Axxx (2.7)

at 0 such that for all t ≥ 0, φφφt(S) ⊂ S and for all xxx0 ∈ S, lim
t→∞

φφφt(xxx0) = 0; and

· there exists an n− k dimensional differentiable manifold U tangent to the unstable

subspace Eu of (2.7) at 0 such that for all t ≤ 0, φφφt(U) ⊂ U and for all xxx0 ∈ U ,

lim
t→−∞

φφφt(xxx0) = 0.

Remark. By the stable (resp. unstable) subspace, we mean the span of the gener-

alized eigenvectors corresponding to the eigenvalues with negative (resp. positive) real

parts.

Theorem 2.3.2 (Centre Manifold Theorem [65]). Let fff ∈ Cr(D) where D is an open

subset of Rn containing the origin and r ≥ 1. Suppose that xxx∗ = 0 is an equilibrium

solution of (2.5), and that A = ∂fff
∂xxx

(xxx)
∣∣∣
xxx∗=0

has k eigenvalues with negative real part, j

eigenvalues with positive real part, and m = n − k − j eigenvalues with zero real part.

Then there exists an m-dimensional centre manifold W c(0) of class Cr tangent to the

centre subspace3Ec of (2.7) at 0, which is invariant under the flow φφφt of (2.5).

Remark. By Theorem 2.3.2, we know that the linearized system (2.6) is tangent to

the nonlinear system (2.5) and, hence, the local behaviour of (2.5) will be approximated

by the behaviour of its linearization; that is, by system (2.6), at xxx∗ = 0 [65].

The classical Hartman-Grobman’s theorem asserts that on a topological level, the linear

approximation (2.6) captures all the local dynamics of (2.5), providing that the equi-

librium solution xxx∗ of (2.5) is hyperbolic (see Definition 2.3.3). In other words, near

a hyperbolic equilibrium solution, the nonlinear system (2.5) has the same qualitative

3By the centre subspace, we mean the span of the generalized eigenvectors corresponding to the
eigenvalues with zero real parts.

22



structure as the linear system (2.6). Before stating the theorem, some definitions are in

order.

Definition 2.3.3. Let xxx∗ ∈ D ⊆ Rn be an equilibrium point of the nonlinear dynamical

system (2.5); xxx∗ is said to be hyperbolic if all the eigenvalues of the Jacobian matrix

∂fff
∂xxx

(xxx)
∣∣∣
xxx=xxx∗

has nonzero real parts.

Definition 2.3.4. A function h : U −→ V is a homeomorphism if h is a bijection

(that is, one-to-one and onto), and both h and h−1 are continuous.

Definition 2.3.5. [65] Let

ẋxx(t) = fff 1(xxx), fff 1 ∈ C1(D1), D1 ⊂ Rn (2.8)

and

ẋxx(t) = fff 2(xxx), fff 2 ∈ C1(D2), D2 ⊂ Rn (2.9)

be two autonomous dynamical systems, where D1 and D2 are open neighbourhoods of

the origin. The two systems are said to be topologically equivalent or to have the

same qualitative structure in a neighbourhood of the origin, if there is a homeomorphism

h : D1 −→ D2 which maps trajectories φφφt of (2.8) onto trajectories ψψψt of (2.9) and

preserves the orientation. If the homeomorphism h preserves the parameterization by

time (that is, h ◦φφφt(xxx) = ψψψt(h(xxx)), ∀ xxx, t ), then the systems (2.8) and (2.9) are said to

be topologically conjugate in a neighbourhood of the origin.

Theorem 2.3.6 (Hartman-Grobman Theorem [65]). Let fff ∈ C1(D) where D is an

open subset of Rn containing the origin, and let φφφt be the flow of the nonlinear system

(2.5). Suppose that xxx∗ = 0 is a hyperbolic equilibrium solution of (2.5).Then there exist

neighbourhoods U , V of the origin and a homeomorphism h : U −→ V, such that for each

x̃xx ∈ U , there is an open interval Ĩ ⊂ R containing the origin such that for all x̃xx ∈ U and

t ∈ Ĩ
h ◦ φφφt(x̃xx) = exp (At)h(x̃xx);

that is, h maps trajectories of (2.5) near the origin onto trajectories of (2.6) near the

origin and preserves the parameterization.
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Remarks.

(i) Theorem 2.3.6 says nothing about the non-hyperbolic case.

(ii) From Definition 2.3.5, the Hartman-Grobman theorem can be stated thus: “If the

origin is a hyperbolic equilibrium solution of (2.5), then the flow of (2.5) is topo-

logically conjugate to the flow of (2.6) near the origin.”

The following theorem gives the conditions under which we can draw conclusions

about the stability of the origin as an equilibrium point for the nonlinear system (2.5) by

investigating its stability as an equilibrium solution for the linearized system (2.6).

Theorem 2.3.7. [46] Let xxx∗ = 0 be a hyperbolic equilibrium solution for the nonlinear

dynamical system (2.5) where fff : D ⊂ Rn −→ Rn is continuously differentiable and D is

a neighbourhood of the origin. Let A = ∂fff
∂xxx

(xxx)
∣∣∣
xxx∗=0

be the Jacobian matrix of fff evaluated

at the origin.

(i) If all the eigenvalues of A have negative real parts, then xxx∗ = 0 is asymptotically

stable.

(ii) If A has at least one eigenvalue with a positive real part, then xxx∗ = 0 is unstable.

Remarks.

· Since the solution of the linearized system (2.6) is of the form zzz(t) = eAtz0, it follows

that if all the eigenvalues of A have negative real parts, then all the trajectories will

decay exponentially to the equilibrium solution, otherwise if there is an eigenvalue

with a positive real part, then the trajectories will grow exponentially in time; hence

Theorem 2.3.7.

· If the Jacobian matrix A in Theorem 2.3.7 has some eigenvalues with a zero real

part with the rest of the eigenvalues having negative real parts, then linearization

fails to determine stability of the origin.
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2.3.2 Routh-Hurwitz criterion

Consider the nonlinear dynamical system (2.5) where xxx ∈ D ⊆ Rn and fff : D −→ Rn

is continuously differentiable. Let xxx∗ = 0 be an equilibrium solution of (2.5); that is,

fff(0) = 0.

Let A be the Jacobian matrix of fff evaluated at the equilibrium solution; that is, A =

∂fff
∂xxx

(xxx)
∣∣∣
xxx∗=0

. The eigenvalues of A are the solutions of the characteristic equation |A− λI| =
0, which expands to

c0λ
n + c1λ

n−1 + · · ·+ cn−1λ + cn = 0. (2.10)

By Theorem 2.3.7, the equilibrium solution is asymptotically stable if all eigenvalues of A

have negative real parts. The Routh-Hurwitz criterion gives necessary and sufficient con-

ditions for all the roots of (2.10) to have a negative real part, and thus for the equilibrium

solution to be asymptotically stable [23].

Theorem 2.3.8 (Routh-Hurwitz criterion). Consider the characteristic equation (2.10)

where ci ∈ R, i = 0, 1, 2, . . . , n; c0 > 0. A necessary and sufficient condition for all the

roots of (2.10) to have negative real parts is that the inequalities

H1 = |c1| = c1 > 0, H2 =

∣∣∣∣∣∣∣
c1 c3

c0 c2

∣∣∣∣∣∣∣
> 0, H3 =

∣∣∣∣∣∣∣∣∣∣

c1 c3 c5

c0 c2 c4

0 c1 c3

∣∣∣∣∣∣∣∣∣∣

> 0,

H4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 c7

c0 c2 c4 c6

0 c1 c3 c5

0 c0 c2 c4

∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, . . . , Hn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 c3 c5 . . . 0

c0 c2 c4 . . . 0

0 c1 c3 . . . 0

0 c0 c2 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0

hold.
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Remark. From Theorem 2.3.8, it can be shown that:

(a) for a two-dimensional system, a necessary and sufficient condition for the real parts

of the two eigenvalues to be negative is that

(i) |A| > 0, and

(ii) tr(A) < 0

(b) for a three-dimensional system, a necessary and sufficient condition for the real parts

of all the three eigenvalues to be negative is that

(i) |A| < 0,

(ii) tr(A) < 0, and

(iii) |A| − tr(A) ·M > 0, where M is the sum of all 2× 2 principal minors of A.4

2.3.3 Lyapunov’s second (direct) method

Linear stability analysis examines the behaviour of a dynamical system in the vicinity

of an equilibrium solution. The analysis, however, does not give an insight into the

stability of the system away from the equilibrium solution. Lyapunov’s second method

can used to establish the global stability of a dynamical system. This method entails

systematic exploitation of special auxiliary functions, termed Lyapunov functions , for

the investigation of stability.

Definition 2.3.9. Let xxx∗ = 0 be an equilibrium solution for system (2.5), and let D ⊆ Rn

be an open neighbourhood of 0. Let V : D −→ R be a continuously differentiable function.

The (total) derivative, V̇ (xxx(t)), of V (xxx(t)) along an arbitrary solution xxx(t) of (2.5) is

given by

V̇ (xxx(t)) =
dV (xxx(t))

dt
=

∂V (xxx(t))

∂xxx
· dxxx(t)

dt
= ∇V (xxx(t)) · fff(xxx)

4If A =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , then the 2 × 2 principal minors of A are

∣∣∣∣
a11 a12

a21 a22

∣∣∣∣,
∣∣∣∣
a11 a13

a31 a33

∣∣∣∣, and

∣∣∣∣
a22 a23

a32 a33

∣∣∣∣.
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Then V is a weak Lyapunov function for system (2.5) on the set D iff

(i) V is continuously differentiable on D;

(ii) V (0) = 0 and V (xxx) > 0, ∀ xxx ∈ D \ {x∗},5

(iii) V̇ (xxx) ≤ 0, ∀ xxx ∈ D.6

Remarks.

· If we have a strict inequality in part (iii) of Definition 2.3.9, then V is known as a

strong (or strict) Lyapunov function.

· Notice that at each point on the (xxx, t) space, V (xxx) is a function of position. Thus,

the sign of V̇ (xxx) determines whether V (xxx) is increasing or decreasing along the

solutions of (2.5). Hence the following theorem.

Theorem 2.3.10 (Lyapunov’s stability theorem [33, 65]). Consider the dynamical system

(2.5), where D ⊆ Rn is a nonempty open set, and let xxx∗ ∈ D be an equilibrium solution of

(2.5). Suppose that for some neighbourhood U of xxx∗, there exists a continuous function

V : U −→ R, which is continuously differentiable on U \{xxx∗} and satisfies the conditions

V (xxx∗) = 0 and V (xxx) > 0, ∀ xxx ∈ U \ {xxx∗}.

(i) If V̇ (xxx) ≤ 0, for all xxx ∈ D, then xxx∗ is stable;

(ii) If V̇ (xxx∗) = 0 and V̇ (xxx) < 0, for all xxx ∈ U \ {xxx∗}, then xxx∗ is asymptotically stable.

(iii) If V̇ (xxx) > 0, for all xxx ∈ U \ {xxx∗}, then xxx∗ is unstable.

The power of Lyapunov’s direct method lies in its independence on information about

solutions of a dynamical system. In other words, to establish the stability of a dynamical

system, we do not require any information regarding the solutions of the system. The

5 i.e., V (xxx) is positive definite in D
6 i.e., V̇ (xxx) is negative semi-definite in D
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drawback for this method, however, is that finding a Lyapunov function for a given sys-

tem is, to a great extent, a hard and challenging task, in fact, often impossible.

The following theorem can be regarded as an extension of Theorem 2.3.10, and can

be used to prove asymptotic stability of system (2.5) if a Lyapunov function satisfying

condition (i) in Theorem 2.3.10 exists.

Theorem 2.3.11 (LaSalle’s theorem [46]). Consider the nonlinear autonomous dynam-

ical system (2.5) and let

(i) ΩΩΩ ⊂ D ⊂ Rn be a compact positively invariant set with respect to (2.5),

(ii) V : D −→ R be a continuously differentiable function such that V̇ (xxx) ≤ 0 ∀ xxx ∈ ΩΩΩ,

(iii) E ⊂ ΩΩΩ be the set of all points in ΩΩΩ where V̇ (xxx) = 0,

(iv) M⊂ E be the largest invariant set in E.

Then every solution starting in ΩΩΩ approaches M as t →∞.

Corollary 2.3.12 (Barbashin-Krasovskii’s theorem [46]). Let xxx∗ = 0 be an equilibrium

solution for (2.5). Let V : D −→ R be a continuously differentiable function on a domain

D containing the origin xxx∗ = 0, such that

(i) V (0) = 0 and V (xxx) > 0, ∀ xxx 6= 0,

(ii) V̇ (xxx) ≤ 0, ∀ xxx ∈ D.

Let S =
{
xxx ∈ D : V̇ (xxx) = 0

}
and suppose that no solution can stay identically in S,

other than the trivial solution, xxx(t) ≡ 0. Then, the origin is locally asymptotically stable.

In order to state the next result on the global stability of an equilibrium solution using

Lyapunov’s direct method, we need the following definition.

Definition 2.3.13. [46] A real function V : Rn −→ R is said to be radially unbounded

if lim
||xxx||→∞

V (xxx) = ∞.
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Remark. If, in addition to the hypothesis of Corollary 2.3.12, V (xxx) is radially un-

bounded, then the origin is globally asymptotically stable.

Theorem 2.3.14 (Barbashin-Krasovskii’s theorem [46]). Let xxx∗ = 0 be an equilibrium

solution for (2.5). Let V : Rn −→ R be a continuously differentiable, radially unbounded

function such that

(i) V (0) = 0 and V (xxx) > 0, ∀ xxx 6= 0,

(ii) V̇ (xxx) < 0, ∀ xxx 6= 0.7

Then, xxx∗ = 0 is globally asymptotically stable.

2.3.4 Comparison principle

The comparison theorem is a powerful tool for analyzing the stability of solutions of

dynamical systems. As the name suggests, comparison theorem compares the unknown

solutions of one differential equation (or differential inequality) with known behaviour of

another differential equation [10]. A scalar version of the comparison theorem is presented.

Theorem 2.3.15 (Comparison theorem [10, 70]). Let f : R × R −→ R satisfy a Lips-

chitz condition (2.3) for t ≥ t0. If the continuous function x(t) satisfies the differential

inequality

ẋ(t) ≤ f(x(t), t),

for t ≥ t0, and if v(t) is a solution of the differential equation

v̇(t) = f(v(t), t)

satisfying the initial condition

v(t0) = x(t0),

then

x(t) ≤ v(t)

for t ≥ t0.

7 i.e., V̇ (xxx) is negative definite in Rn
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The generalization of Theorem 2.3.15 requires a few more details, which can be found

in, for example, [50, 57, 70]. The comparison theorem allows one to replace the difficult

problem of analyzing a given dynamical system ẋxx1 = fff 1(xxx1, t), say, by the comparatively

simple problem of analyzing another dynamical system ẋxx2 = fff 2(xxx2, t), provided it is

known that

– fff 1(yyy, t) ≤ fff 2(yyy, t) (componentwise),

– xxx1(0) ≤ xxx2(0), and

– fff 2 is quasi-monotone nondecreasing (or more generally, quasi-monotone).

When these conditions are satisfied, the conclusion is that the solutions xxx1(t) of fff 1 are

bounded by the solutions xxx2(t) of fff 2 for all t ≥ 0 for which both solutions are defined,

thus the qualitative behaviour of the former system is inferred from the latter (see [57]

pp. 140).

2.4 Special case: planar dynamical systems

In this section, we present a few results that are special to the two-dimensional system.

Consider the nonlinear autonomous planar dynamical system

ẋ = f1(x, y)

ẏ = f2(x, y) (2.11)

x(0) = x0, y(0) = y0

where (x, y) ∈ A ⊂ R2, f1 and f2 are real-valued, continuously differentiable functions

on A, and FFF = (f1, f2) : A −→ R2 is a continuous vector field. Assume that at each

point (x, y) ∈ A, sufficient conditions for existence and uniqueness of the solutions of

(2.11) are fulfilled8.

8see Theorems 2.2.4 and 2.2.8
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Definition 2.4.1. A solution (x(t), y(t)) ∈ A ⊂ R2 of system (2.11) is called a closed

orbit or a periodic solution, if for a fixed τ > 0,

(x(t), y(t)) = (x(t + τ), y(t + τ)), ∀ t. (2.12)

The smallest such number τ satisfying (2.12) is called the period.

The trajectory of a periodic solution is either a simple closed curve or, in the case of

constant (trivial) solutions, a single point − the equilibrium point.

A limit cycle of (2.11) is a periodic solution of (2.11) with the additional property that it

is isolated, in the sense that any neighbouring trajectory of the limit cycle is not closed,

they spiral either towards or away from the limit cycle.

Definition 2.4.2. [33] A limit cycle is a closed orbit ΓΓΓ for which there exists at least

one zzz /∈ ΓΓΓ such that either ΓΓΓ is the ω-limit set of zzz, or ΓΓΓ is the α-limit set of zzz. In the

first case, ΓΓΓ is called an ω-limit cycle; in the second case, an α-limit cycle.

We now present the celebrated Poincaré-Bendixson’s theorem for planar systems,

which says that every bounded solution must either be an equilibrium solution, a closed

orbit, or the solution must approach one of these in forwards and backwards time.

Theorem 2.4.3 (Poincaré-Bendixson’s theorem [33]). A non-empty compact limit set

of a continuously differentiable planar dynamical system, which contains no equilibrium

point, is a closed orbit.

According to Theorem 2.4.3, if a trajectory enters and does not leave a compact region

of phase space, and this region contains no equilibria, then the trajectory must approach

a periodic orbit as t →∞. An alternative form of Theorem 2.4.3 is stated:

Corollary 2.4.4 (Poincaré-Bendixson’s theorem [17]). Let A be a positively invariant

region for the vector field FFF of (2.11), where FFF ∈ C1. If A is compact, then A contains

either a closed orbit or an equilibrium point.
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Recall that a curve C ∈ R2 is called simple if it does not intersect itself.

Definition 2.4.5. A region A is said to be simply connected if for any simple closed

curve C lying entirely within A, all points inside C are points of A.

The following theorem provides us a technique for excluding periodic orbits in planar

dynamical systems.

Theorem 2.4.6 (Dulac’s criterion [65]). Let FFF ∈ C1(A) where A is a simply connected

region in R2. If there exists a function B(x, y) ∈ C1(A) such that the divergence of BFFF ;

namely ∇ · (BFFF ) = ∂(Bf1)
∂x

+ ∂(Bf2)
∂y

, is not identically zero and does not change sign in A,

then there are no closed orbits of (2.11) contained entirely in A.

Remarks.

1. In Theorem 2.4.6, by “does not change sign,” we mean that the quantity is entirely

negative or entirely positive on A.

2. The function B(x, y) in Theorem 2.4.6 is called a Dulac function for FFF in the region

A. When B(x, y) ≡ 1, Theorem 2.4.6 is called Bendixson’s criterion (Theorem

2.4.7), which rules out the possibility of closed orbits.

Theorem 2.4.7 (Bendixson’s criterion [65]). Let FFF ∈ C1(A) where A is a simply con-

nected region in R2. If the divergence of the vector field FFF , ∇ · FFF = ∂f1

∂x
+ ∂f2

∂y
, is not

identically zero and does not change sign in A, then (2.11) has no nontrivial closed orbit

lying entirely in A.

Recall that from Theorem 2.3.8 we remarked that for a planar dynamical system, a

hyperbolic equilibrium point is asymptotically stable, iff the trace and the determinant of

the Jacobian evaluated at the equilibrium solution are negative and positive, respectively.

Notice that the expression ∇ · FFF in Theorem 2.4.7 is nothing new but the trace of the

Jacobian matrix of (2.11). Thus, if ∇ ·FFF does not change sign on A, then this suggests

that if (x∗, y∗) is the only equilibrium solution of (2.11), then (x∗, y∗) is everywhere
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asymptotically stable or everywhere unstable on A, in this case ruling out the possibility

of closed orbit in A. Hence the Bendixson’s criterion.

2.5 Qualitative stability analysis

In this section, we present a method of examining the stability of an equilibrium solution

of a dynamical system when the entries of the linearization (Jacobian) matrix are specified

in terms of sign values; that is, the entries of the Jacobian matrix are elements of the

set {+,−, 0}. The idea of qualitative stability has some rather interesting applications

in such areas as ecology [56] and economics [66].

Definition 2.5.1. A matrix A ∈ Mn(R) is said to be stable if and only if each eigenvalue

of A has a negative real part.

Definition 2.5.2. A sign pattern matrix is a matrix B = (bij) whose entries bij are

elements of the set {+,−, 0}.

Given a matrix A ∈ Mmn(R), the sign pattern matrix of A is the matrix sgn(A) =

(sgn(aij)), where

sgn(aij) =





−, if aij < 0

0, if aij = 0

+, if aij > 0

Example.

If A =




1 −1 0

0 1 −2

−2 0 −4


 , then sgn(A) =




+ − 0

0 + −
− 0 −




Definition 2.5.3. Let A = (aij) be an n×n sign pattern matrix. The set of all matrices

B ∈ Mn(R) with the same sign pattern as A is called the sign pattern class (or

qualitative class) of A, and is denoted by Q(A); that is,

Q(A) = {B = (bij) ∈ Mn(R) : sgn(bij) = aij, ∀ i, j = 1, · · · , n}
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Qualitative (or sign) stability of matrices is motivated by the following question: Are

all the matrices formed by randomly changing the magnitude (but not the sign) of the

nonzero entries aij of a stable matrix A ∈ Mn(R) stable in the sense of definition 2.5.1?

Definition 2.5.4. A matrix A ∈ Mn(R) is said to be sign stable (or qualitatively

stable) if B is stable for every B ∈ Q(A).

The following theorem, due to Quirk & Ruppert [66], gives the necessary conditions

for qualitative stability of a real square matrix.

Theorem 2.5.5 (Necessary conditions for qualitative stability [66]). Let A = (aij) ∈
Mn(R). Then the following conditions are necessary for qualitative stability of A.

M1 aii ≤ 0 for all i.

M2 aii < 0 for at least one i.

M3 aijaji ≤ 0 for all i 6= j.

M4 aijajk · · · aqrari = 0 for any sequence of 3 or more distinct indices i, j, · · · , q, r.

M5 A is nonsingular.

We remark that Theorem 2.5.5 gives necessary but not sufficient conditions for qual-

itative stability. By introducing the so-called ‘colour test’, Jeffries [40] formulated the

necessary and sufficient conditions for qualitative stability of a real square matrix.

Definition 2.5.6. A directed graph (or a digraph) is a pair D = D(N, A), where N is

a finite set of nodes (or vertices) and A ⊆ N ×N is a finite set of directed edges (or

arcs) between the nodes.

An arc a ∈ A from node ni to node nj, ni, nj ∈ N, is represented by a tuple (ni, nj).

We then call ni the initial node (or head) of a and nj the terminal node (or tail) of

a. A signed digraph is a digraph in which each directed arc has a plus (+) or minus

(−) sign associated with it.
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Definition 2.5.7. A digraph D′ = (N′,A′) is a subgraph of a digraph D = (N, A) if

N′ ⊆ N and A′ ⊆ A.

Definition 2.5.8. [40] A predation link in a signed digraph is a pair of nodes connected

by one arc with a + sign and another arc with a − sign.

Definition 2.5.9. [40] A predation community is a subgraph consisting of all inter-

connected predation links.

Colour test [40]

A predation community passes the colour test provided each node in the associated

digraph may be coloured black or white with the result that

C1 Each self-regulating node is black;

C2 There is at least one white node;

C3 Each white node is connected by a predation link to at least one other white node;

C4 Each black node connected by a predation link to one white node, is connected by a

predation link to at least one other white node.

A predation community fails the colour test if at least one of the conditions C1 - C4

fails.

Theorem 2.5.10 (Necessary and sufficient conditions for qualitative stability [40, 66]).

A matrix A = (aij) ∈ Mn(R) is qualitatively stable if and only if it satisfies the following

conditions:

M1 aii ≤ 0 for all i.

M2′ Each predation community in the digraph associated with A fails the colour test.

M3 aijaji ≤ 0 for all i 6= j.

M4 aijajk · · · aqrari = 0 for any sequence of 3 or more distinct indices i, j, · · · , q, r.
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M5 A is nonsingular.

Matrices that are qualitatively stable are necessarily stable in the ordinary sense. In

other words, if in system (2.6), J∗ is qualitatively stable, then each eigenvalue of J∗

has a negative real part and, by Theorem 2.3.8, the equilibrium solution xxx∗ of system

(2.5), is locally asymptotically stable. However, if J∗ is not qualitatively stable, it does

not necessarily mean that J∗ is unstable. Rather, a detailed knowledge of the actual

magnitudes of the elements of J∗ (instead of merely their signs) is needed [56].

2.6 Sensitivity analysis

Virtually all physical/biological processes, are governed by a set of rules, such as chemical

reactions, conservation of mass, and mass action law. A mathematical model of such a

process necessarily contain physical parameters that make the model specific to the pro-

cess system of interest. When analyzing a mathematical model, therefore, computation

of model solutions offers limited insight into the ensemble dynamics of the system. It is

hence important to determine systematically the influence of parameter variations on the

model solutions. Sensitivity analysis involves the use of analytical and/or computational

tools to evaluate the changes in the output of a dynamical system in response to specified

changes in the system’s input parameters.

Sensitivity analysis can be divided into two categories; local and global sensitivity analysis.

Local sensitivity analysis focuses on the estimates of the model sensitivity to parameter

variation in the neighbourhood of a certain parameter value. Global sensitivity analysis,

on the other hand, is concerned with the whole set of parameters and aims to describe

how the output varies in response to parameter variations within the whole parameter

space.

There are several local sensitivity analysis techniques in the literature that have been

developed to assess parameter importance. We discuss two of the most commonly used

approaches: “brute-force” method and differential sensitivity analysis .
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2.6.1 “Brute-force” approach (Indirect method)

In this method, input parameters are perturbed, one-at-a-time, and the model equations

are solved anew for each new set of values of the parameters. The sensitivity coefficients

(partial derivatives of the output functions with respect to the parameters) are then

calculated from appropriate finite difference approximations.

Let the process of interest be described by a system of nonlinear first-order ordinary

differential equations of the generic form

ẋxx(ppp, t) = fff(xxx(ppp, t), ppp, t), (2.13a)

xxx(ppp, t0) = xxx0(ppp) (2.13b)

where xxx ∈ Rn is the vector of variables, ppp ∈ Rm is the vector of parameters, fff ∈ Rn is the

right-hand-side of the differential equations, and xxx0 ∈ Rn is the vector of initial values of

the variables. The vectors xxx and fff depend on the parameters ppp.

The first-order sensitivity coefficient of the ith variable, xi, with respect to the jth pa-

rameter, pj, is given by

sij =
∂xi(pj, t)

∂pj

≈ lim
∆pj→0

xi(pj + ∆pj, t)− xi(pj, t)

∆pj

,

using forward difference scheme, or

sij =
∂xi(pj, t)

∂pj

≈ lim
∆pj→0

xi(pj + ∆pj, t)− xi(pj −∆pj, t)

2∆pj

,

using centred difference scheme [75] - here, ∆pj is the perturbation value. The local

sensitivity coefficients, sij(t), show the effect of a small perturbation of parameter j on

variable i. The brute-force method is widely used since it does not require any extra

modification to be made above that needed to solve Eq. (2.13) [67, 75].
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2.6.2 Differential sensitivity analysis (Direct method)

An alternative to the brute force method is to treat sensitivity coefficients themselves as

dynamic variables and to develop differential equations describing their evolution.

Taking the derivatives on both sides of Eq. (2.13) with respect to ppp, and interchanging

the order of differentiation, we obtain a system of ordinary differential equations, written

in compact matrix notation as

Ṡ = JS + P, S(ppp, t0) = S0(ppp).

That is,

d

dt

[
∂xxx

∂ppp

]
=

∂fff

∂xxx

∂xxx

∂ppp
+

∂fff

∂ppp
,

∂xxx(ppp, t0)

∂ppp
=

∂xxx0(ppp)

∂ppp
. (2.14)

Here,

- S(t) =
(
sij(t)

)
=

(
∂xi

∂pj

)
is the n×m sensitivity matrix,

- J =
(

∂fi

∂xj

)
is the n× n Jacobian matrix, and

- P =
(

∂fi

∂pj

)
is the n ×m matrix composed of derivatives of each of n-functions on

the right-hand side in Eq. (2.13a) with respect to each of the parameters.

The initial condition for ∂xxx
∂pppj

is the zero vector if pj is not an initial condition, otherwise

if pj is an initial condition for the ith variable, then

∂xxx

∂pppj

= [0 · · · 0 1 0 · · · 0]T

where 1 is in the ith position [67].

Equations (2.13) and (2.14) are coupled through matrices ∂fff
∂xxx

and ∂fff
∂ppp

; that is, Eq. (2.14)

can only be solved if the variable values, to be calculated by Eq. (2.13a), are avail-

able at times where the above matrices are calculated during the numerical solution of

the sensitivity Eq. (2.14) [75]. Thus, complete sensitivity analysis of system (2.13) re-

quires solving Eqs. (2.13) and (2.14) simultaneously. This system of ordinary differential
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equations has n(m + 1) equations. The explicit calculation and implementation of the

expression appearing on the right-hand side of (2.14) can be a tedious task.

The existence of derivatives of the solution to (2.13) is given by Gronwall’s theorem [29].

Theorem 2.6.1 (Gronwall’s Theorem [29]). If the partial derivatives ∂fff
∂xxx

and ∂fff
∂ppp

exist and

are continuous in the neighbourhood of the solution xxx(ppp,xxx0(ppp), t), then the derivatives of

the solution with respect to ppp exist, are continuous, and satisfy the linear inhomogeneous

matrix differential equation (2.14).

2.6.3 Normalization of sensitivity

The sensitivity coefficient sij = ∂xi

∂pj
is of limited applicability in its original form due to

its dependence on the physical units of variables and parameters in the model. The pa-

rameters and the variables of model (2.13) may have different physical units. To separate

the sensitivity results from the units of the model, the usual solution is to introduce nor-

malized sensitivity coefficients. These coefficients form the normalized sensitivity matrix

S̄, whose ijth element is given by

s̄ij =
pj

xi

∂xi

∂pj

=
∂ ln xi

∂ ln pj

The normalized sensitivity coefficients s̄ij are now dimensionless real numbers that rep-

resent the fractional change in variable xi caused by a fractional change of parameter pj.

s̄ij could be either positive or negative.

The sensitivity coefficients can be interpreted as the ratio between the change in the

process behaviour and the perturbation in the parameter that causes this change. A low

sensitivity magnitude with respect to a parameter indicates a robust behaviour in which

variations in this parameter have little effect on the output. On the other hand, a large

sensitivity magnitude means that variations in the parameter are increased, causing large

output changes.
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Chapter 3

A review of previous works on

microtubule dynamics modelling

Several mathematical models addressing different aspects of the microtubule behaviour

have been developed over the years. In this chapter, we review some of the models that

have been proposed in an attempt to capture the dynamic nature of microtubules.

3.1 Introduction

Numerous mathematical models have been developed over the last two decades to describe

the process of microtubule dynamics. We review five categories of models:

(i) those that use the classical chemical kinetics approach,

(ii) those that use the chemical master equation approach,

(iii) those that use the mechanical approach,

(iv) those that use the cellular automata modelling approach, and

(v) those that use the agent-based modelling approach.

In our modelling later on, we will be adopting the chemical kinetics approach. The master

equation approach is closely related to the chemical kinetics approach, save for the fact
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that the former is stochastic while the latter is deterministic. In our review, therefore,

we will detail these two approaches, with a view to providing the necessary background

for our work.

3.2 Chemical kinetics approach

In the chemical kinetics approach, the variables of interest are the concentrations of

individual proteins within an ensemble of microtubules. The reaction rates in the model

are governed by the mass action law , which states that for a reaction in a homogeneous

system, the reaction rate is proportional to the concentrations of the individual reactants

involved. Thus, for example, if A and B react irreversibly at a rate constant k1 to produce

C, then the rate of change of the concentration of C would be

d[C]

dt
= k1[A][B]

where [x] denotes the concentration of x. Thus, in the chemical kinetics approach, the

models consist of a system of coupled first-order ordinary differential equations. This

approach is deterministic, in the sense that given a set of initial conditions, the model

can estimate what happens to the system in the future. Sept et al. [69], for example, de-

veloped a chemical kinetics model for microtubule dynamics with a focus on microtubule

oscillations. The model is based on the following reactions:

(i) Nucleation − nc GTP-tubulin dimers, T aggregate at a rate constant kn to form

a nucleus (seed) of length nc.

ncT
kn−→ Mnc

(ii) Growth − a GTP-tubulin dimer adds to a microtubule of length n at a rate

constant kg to produce a microtubule of length n + 1.

Mn + T
kg−→ Mn+1
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(iii) Decay − a microtubule of length n decays at a rate constant kd, forming n GDP-

tubulin dimers.

M
kd−→ nD

(iv) Conversion − GDP-tubulin dimers are converted to GTP-tubulin dimers at a

rate constant kc.

D
kc−→ T

These reactions give rise to the following system of ordinary differential equations.

Ċt = −knCt − kgMCt + kcCd (3.1a)

Ċd = kdCa − kcCd (3.1b)

Ċa = knCt + kgMCt − kdCa (3.1c)

Ṁ = knCt − kdM (3.1d)

System (3.1) gives the time evolution of GTP-tubulin dimers, Ct, GDP-tubulin dimers

Cd, assembled tubulin, Ca, and microtubules, M . In this model, it is assumed that all the

variables depend only on time. It is further assumed that nc = 1, and that a microtubule

completely decays. The latter assumption is rather too strong though.

The authors demonstrate that for system (3.1) to exhibit an oscillatory behaviour, an

extra reaction in addition to the above four reactions must be added. This observation

had earlier been made by Marx & Mandelkow [54]. Sept et al. [69] chose microtubule

decay induced by excess GDP-tubulin dimers to produce oscillations:

Mn + D
k∗d−→ (n + 1)D
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Figure 3.1: Solutions for Ct, Cd, Ca and M for model (3.1). Simulations were performed
for initial tubulin concentration of c = 40µM and at temperature 37oC [69].

After adding this reaction, system (3.1) becomes

Ċt = −kgMCt − knCt + kcCd (3.2a)

Ċd = kdCa − kcCd + k∗dCaCd (3.2b)

Ċa = kgMCt − kdCa + knCt − k∗dCaCd (3.2c)

Ṁ = −kdM + knCt − k∗dMCd (3.2d)

Sept [68] extended system (3.2) by incorporating spatial dependence.

Ċt = −kgMCt − ncknC
nc
t + kcCd + D0∇2Ct, (3.3a)

Ċd = kdCa − kcCd + k∗dCaCd + D0∇2Cd, (3.3b)

Ċa = kgMCt − kdCa + knCnc
t − k∗dCaCd, (3.3c)

Ṁ = −kdM + knCt − k∗dMCd, (3.3d)
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Figure 3.2: Solutions for Ct, Cd, Ca and M for model (3.2). Simulations were performed
for initial tubulin concentration of c = 40µM and at temperature 37oC [69].

where D0 is the diffusion coefficient, assumed same for all the tubulin dimers. Simula-

tion results of the reaction-diffusion model (3.3) show that microtubule oscillations can

be produced in both space and time. Qualitatively similar results to those in [69] are

produced. Another model using the chemical kinetics approach is [54].

3.3 Master equation approach

In the master equation formalism, the chemical reactions in the microtubule dynamics

are treated as random processes, based on the premise that it is impossible to say with

complete certainty the state of an ensemble of microtubules at a future time. Stochastic

dynamic models are thus developed to describe the evolution of the probability distribu-

tion P (i, t), characterizing the system in the ith state at time t. The probability distri-

bution is essentially the difference between the transition probabilities for the processes

entering a given state and the processes leaving the state:

dP (i, t)

dt
=

[
transition probabilities for the

processes leading into state i

]
−

[
transition probabilities for the

processes leading out of state i

]
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For example, Dogterom & Leibler [19] used the master equation approach to develop a

two-state model for individual microtubules. Denoting the probability density for finding

at time t a microtubule end in the growing (shrinking) state with a length between l and

l + dl by Pg(l, t) ( Ps(l, t)), they proposed the following model for the time evolution of

the probability distributions of the microtubule ends:

∂Pg(l, t)

∂t
= kresPs(l, t)− kcatPg(l, t)− kg

∂Pg(l, t)

∂l
, (3.4a)

∂Ps(l, t)

∂t
= kcatPg(l, t)− kresPs(l, t) + ks

∂Ps(l, t)

∂l
, (3.4b)

where

· kcat is the catastrophe frequency; that is, the rate at which a microtubule end

switches from a growing to a shrinking state,

· kres is the rescue frequency; that is, the rate at which a microtubule end switches

from a shrinking to a growing state,

· kg is the assembly rate, and

· ks is the disassembly rate.

Dogterom and co-workers [20] extended Eqns. (3.4) further by considering the dynamics

of the population of GDP- and GTP-tubulin dimers:

∂Pg(l, t)

∂t
= kresPs(l, t)− kcatPg(l, t)− kg

∂Pg(l, t)

∂l
,

∂Ps(l, t)

∂t
= kcatPg(l, t)− kresPs(l, t) + ks

∂Ps(l, t)

∂l
,

∂Ct(l, t)

∂t
= kcCd(l, t)− kgs0

(
L2

l2

)
Pg(l, t) + D∇2Ct(l, t),

∂Cd(l, t)

∂t
= −kcCd(l, t) + kss0

(
L2

l2

)
Ps(l, t) + D∇2Cd(l, t),

where Cd(l, t) and Ct(l, t) are the concentrations of GDP- and GTP-tubulin dimers,

respectively, D is the diffusion coefficient, kc is a rate at which GTP-tubulin dimers are

regenerated from the GDP-tubulin dimers, L is the radius of the centrosome1, and s0,

0 ≤ s0 ≤ 1, is the total surface density of nucleation sites (that is, the fraction of the

centrosome area capable of microtubule nucleation).

1The centrosome is the main microtubule organizing centre in the cell.
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Antal et al. [3] also use the master equation approach to describe microtubule dy-

namics. Their model includes the following equations:

dP (n, t)

dt
= −(n + kg)P (n, t) + kgP (n− 1, t) + (n + 1)P (n + 1, t), (3.5)

dP (l, t)

dt
= kg

[
P (l − 1, t)− P (l, t)

]
, (3.6)

dP (l, n, t)

dt
= kgP (l − 1, n− 1, t)− (n + kg)P (l, n, t) + (n + 1)P (l, n + 1, t), (3.7)

dP (r, t)

dt
= kg

[
P (r − 1, t)− P (r, t)

]− rP (r, t) +
∑

s≥r+1

P (s, t). (3.8)

Equation (3.5) gives the probability distribution P (n, t) for a microtubule with n GTP-

tubulin dimers at time t, taking into account two processes; namely, microtubule elonga-

tion at a rate constant kg, and conversion of GTP-tubulin dimers to GDP-tubulin dimers

at a rate 1. Equation (3.6), on the other hand gives the length distribution P (l, t) for the

microtubule. The joint probability distribution, P (l, n, t), for a microtubule of length l

containing n GTP-tubulin dimers at time t is given by Eq. (3.7). Finally, Eq. (3.8) gives

the probability distribution, P (r, t), for a microtubule GTP-tubulin cap of length r at

time t.

In Eq. (3.5), the conversion events from GTP-tubulin dimers to GDP-tubulin dimers

occur with total rate n. Using the generating function method (see [4] for details), the

solution to Eq. (3.5) can be shown to be the Poisson distribution

P (n, t) =
[kg(1− e−t)]

n

n!
e−kg(1−e−t),

giving the mean number of GTP-tubulin dimers and its variance as

〈n〉 = kg(1− e−t), 〈n2〉 − 〈n〉2 = kg(1− e−t).

For the initial condition P (l, 0) = δl,0, the solution to (3.6) is again the Poisson distribu-

tion

P (l, t) =
(kgt)

l

l!
e−kgt,

whose mean and variance are given as

〈 l 〉 = kgt, 〈 l2 〉 − 〈 l 〉2 = kgt.
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Thus the growth rate of the microtubule and the diffusion coefficient of the microtubule

end are, respectively, kg and kg

2
[3, 4].

From Eq. (3.8), the GTP-tubulin cap length distribution is shown [4] to be

P (r, t) =
Γ (1 + kg)

Γ (2 + kg + r)
(r + 1)(kg)

r, (3.9)

where Γ (k) = (k − 1)!, k ∈ Z+. From Eq. (3.9), the average GTP-tubulin cap

length approaches
√

πkg

2
as kg → ∞ [4], implying that even though the average num-

ber of GTP-tubulin dimers equals kg, only
√

kg of them organize themselves into the

microtubule GTP cap [3]. Other microtubule dynamics models adopting the master

equation approach include [11, 12, 45]. In [45], microtubule dynamics is considered in

a detailed one-dimensional approximation in a region of section S and length L. The

model considers three populations; namely, GTP-tubulin, GDP-tubulin and the plus end

of a microtubule.

3.4 Mechanical approach

To fulfill their role in various cellular functions, microtubules possess certain mechani-

cal properties. In a bid to understand these properties, a number of mechanical models

have been developed. These models make use of the existing experimental data and the

increasing knowledge on the interactions between the tubulin molecules and the elastic

properties of microtubule protofilaments. For example, Jánosi and co-workers [38] devel-

oped an ‘elastic sheet model’ of microtubule wall material. This model reproduced various

microtubule morphologies, yielding estimates on longitudinal and lateral bond strengths

and intrinsic curvatures. The model also addressed the elastic properties of microtubule

ends, and provided insight into the intrinsic metastability of growing microtubules.

VanBuren et al. [78] developed a mechanical model of microtubule assembly dynamics

to estimate tubulin-tubulin bond energies, mechanical energy stored in the lattice, and

the size of the GTP-tubulin cap at the microtubule tips. Using the model, the authors
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were able to estimate important mechanical parameters such as the flexural rigidity2 of

tubulin subunits and important thermodynamic parameters such as the free energy of the

interactions of tubulin dimers. The authors also confirmed that the longitudinal bonds

between tubulin dimers along protofilaments are much stronger than the lateral bonds

between adjacent protofilaments. Computer simulations of the model provided a frame-

work for assessing the influence of mechanical properties of microtubules and tubulin

dimers on dynamic instability. The microtubule dynamic instability generated by the

model has rates and transition frequencies (catastrophe and rescue) that are similar to

those measured experimentally.

The mechanochemical model by VanBuren et al. [79] incorporated the three-dimensional

nature of tubulin building blocks. The model incorporated mechanical stress and strain

within the microtubule lattice, relating conformational changes in tubulin dimers to the

standard Gibbs free energy of the noncovalent interactions of tubulin molecules. Com-

puter simulations of the model reproduced the growing and shrinking phases of micro-

tubules. The model also recapitulated the three-dimensional microtubule-end structures

and rates of assembly and disassembly for microtubules grown under standard conditions.

The authors established that sheet-like microtubule ends are more likely to undergo catas-

trophe than blunt ends.

Designed to understand the process of dynamic instability, the model by Molodtsov et

al. uses the structural and biochemical properties of tubulin to predict the shape and

stability of microtubules [59]. This model provides a link between the biophysical char-

acteristics of tubulin and the physiological behaviour of microtubules. Using the model,

the authors confirmed the hypothesis of the ‘GTP-cap model’ of dynamic instability

[18, 48, 58]; namely, a microtubule with a GTP-tubulin cap is stable.

Other examples of mechanical-based modelling of microtubule dynamics include [37, 60,

76, 83].

2Flexural rigidity is the resistance of a structure to bending forces.
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3.5 Cellular automata (CA) modelling approach

A cellular automaton is a discrete dynamical system - the space, time and states of the

system are discrete. Thus, in cellular automata (CA) modelling approach, the physical

system is idealized as a regular (discrete) lattice [1, 74], whose points (called cells) can

take a finite set of values. The configuration of the system at a given time step is governed

by a set of rules. A formal definition of a cellular automaton is given in [64] as follows:

Definition 3.5.1. A cellular automaton is a 4-tuple
(
L,Σ, N, f

)
consisting of an n-

dimensional lattice of cells indexed by integers, L = Zn, a finite set Σ of cell states, a

finite neighbourhood scheme N ⊆ Zn, and a local transition function f : ΣN −→ Σ.

Ermentrout & Edelstein-Keshet [25] divide the CA models into three classes;

(i) deterministic (or Eulerian) automata,

(ii) lattice-gas models, and

(iii) solidification models.

In a deterministic automaton, the spatial domain of the model is divided into a fixed

lattice and each cell has a state associated with it. The state at the next time step is

determined solely from earlier states of the cell and those of the cells in its neighbourhood

[1, 25].

In lattice gas models, again the system consists of a discrete spatial grid on which particles

move about and interact in some prescribed manner. Unlike the deterministic automata,

however, the rules governing the evolution of the particles in lattice-gas models are prob-

abilistic.

In solidification models, the rules for the evolution of the particles in the lattice re-

semble those of the lattice-gas models, except that particles may be irreversibly bound

at grid points, or cells may undergo irreversible configuration changes [25].

A model that subtly uses this approach is Bassetti et al. [6]. By discretizing space, time
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and the orientation of microtubules, the authors defined a two-dimensional square lattice

to represent the motor3-microtubule interactions. Each cell in the lattice is either empty

or occupied by the centre of mass of a microtubule. Using the model, the authors suc-

cessfully produced inhomogeneous stripe patterns, demonstrating that spatial patterns

are obtained as non-equilibrium solutions of the system dynamics. Their model neglects

dynamic instability in microtubules.

Casati et al. [15] used the CA modelling approach to investigate the influence of an elec-

tromagnetic field on microtubule assembly dynamics. The authors used a two-dimensional

hexagonal uniform lattice to represent a portion of the cytoplasm through which the elec-

tromagnetic field propagates. Their modelling approach accounts for the changes that

biological material induces on the electromagnetic field. They demonstrated that an elec-

tromagnetic field is capable of generating filamentary structures through the action of the

ponderomotive force4, despite the mixing effect of cytoplasmic hydrodynamic flows.

Another model that uses the CA approach is Kunwar et al. [49]. The authors used the

model to describe the intra-cellular traffic of a family of microtubule motor proteins called

dynein from the cell periphery towards the nucleus of the cell.

3.6 Agent-based modelling (ABM) approach

Agent-based modelling (ABM) is a technique that treats the components of a given system

as agents, each of which has a set of behavioural rules that determine how the agents’

states evolve in response to their current state and the state of their local environment.

Thus, the agents in an ABM framework are assumed to have the ability to perceive and

interact with each other and their environment. A typical ABM consists of

· a system of agents,

3Motor proteins are responsible for a wide range of intracellular activities, including transportation
of vesicles and organelles along microtubules. There are two types of microtubule motors; kinesin and
dynein (see, for example, [2] for details).

4A ponderomotive force is the force acting on a charged particle as the particle moves in an electro-
magnetic field.
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· a set of agent relationships, and

· an environment or framework for simulating agent behaviours and interactions.

ABM can be considered a generalization of CA, where the model system is not required

to be on a lattice and the rules can take any form including adaptive elements and goals-

directed behaviour [74].

To our knowledge, very few models of microtubule dynamics adopt the ABM approach.

The only model that we are aware of is that developed by Bouchard and co-workers [13].

Using stochastic AB simulations, the authors illustrated how the dynamic instability of

microtubules can be harnessed to aid in building nanostructures.
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Chapter 4

Modelling microtubule dynamics

In this chapter, we develop biologically plausible mathematical models of microtubule

dynamics. These models attempt to describe microtubule assembly and disassembly

kinetics in vitro. In the first two models in section 4.1, we model microtubule dynamics

in the absence of dynamic instability. The other two models in section 4.2, introduce

dynamic instability in the system.

4.1 Microtubule dynamics in the absence of dynam-

ical instability

In this section, we model the temporal evolution of concentration in vitro, tracking the

rates of change of the concentrations stemming from the chemical kinetics of microtubule

assembly and disassembly in the absence of dynamic instability. We consider the following

chemical reactions.

(i) Nucleation − n GTP-tubulin dimers, T aggregate at a rate constant kn to form

a nucleus (seed), M1. The nucleus provides the site to which more dimers can add

by the elongation process.

nT
kn−→ M (4.1)
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(ii) Elongation − a GTP-tubulin dimer adds to the newly formed nucleus or to a

microtubule1(of any length) at a rate constant kg.

M + T
kg−→ M (4.2)

(iii) Shrinkage − a microtubule shrinks at a rate constant ks, losing GDP-tubulin

dimer, D.

M
ks−→ M + D (4.3)

(iv) Reactivation − the GDP-tubulin dimers liberated during the shrinkage process

are converted to GTP-tubulin dimers at a rate constant kc. These GTP-tubulin

dimers are then available to be incorporated into the microtubule during the elon-

gation process, or to form new seeds during the nucleation process.

D
kc−→ T (4.4)

Reaction (4.4) is oversimplified, in the sense that it does not include the reactant (GTP)

and byproduct (GDP). We are making an assumption that there is excess GTP in the

solution. In their model, Katrukha and Guriya [45] have actually taken into account

the concentrations of GTP and GDP in the microtubule dynamics. The concentrations

are, however, treated as parameters and not as variables. A flow diagram for reactions

(4.1-4.4) is shown in Figure 4.1.

We consider three state variables, namely,

(i) Cm(t), the concentration of microtubules,

(ii) Ct(t), the concentration of GTP-tubulin, and

(iii) Cd(t), the concentration of GDP-tubulin.

1Since we are tracking the rates of change of concentration, no distinction is made between the seed
in reaction (4.1) and the microtubules in reactions (4.2) and (4.3).
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Figure 4.1: A flow diagram for the assembly and disassembly of microtubules in the absence of dynamic
instability. Here, M denotes a microtubule, while D and T denote the GDP- and the GTP-tubulin dimer,
respectively. GTP-tubulin dimers aggregate to form a microtubule nucleus from which a microtubule
elongate by addition of more GTP-tubulin dimers. A microtubule can also undergo shrinkage, losing
GDP-tubulin dimers in the process. GTP-tubulin dimers are regenerated when the excess GDP-tubulin
dimers interact with GTP molecules.

Two approaches for the microtubule nucleation kinetics are explored; namely, saturating

and nonsaturating nucleation kinetics.

Model I: Microtubule dynamics with non-saturating nucleation

Assuming the law of mass action, the kinetic equations describing reactions (4.1 - 4.4)

are:

dCt

dt
= kcCd − knC

n
t − kgCmCt (4.5a)

dCd

dt
= ksCm − kcCd (4.5b)

dCm

dt
= knCn

t + kgCmCt − ksCm (4.5c)

In system (4.5), the rate of microtubule nucleation is assumed to exponentially depend

on the concentration of GTP-tubulin dimers; that is, we have a nonsaturating nucleation

kinetics (illustrated in Figure 4.2). This has indeed been established experimentally [42],

54



with the nucleation exponents ranging from 6 to 12 [16] (see also [41] for details).

Figure 4.2: An illustration of non-saturating nucleation kinetics. As the GTP-tubulin
concentration (Ct) increases, the nucleation rate increases unboundedly.

System (4.5) is considered with nonnegative initial conditions

Cm(0) ≥ 0, Ct(0) ≥ 0, Cd(0) ≥ 0.

The parameters used in system (4.5), and their meaning, are summarized in Table 4.1.

Model II: Microtubule dynamics assuming saturating nucle-

ation

In model I, we have assumed that the nucleation rate depends exponentially on the GTP-

tubulin concentration. We now consider an alternative mechanism. Using a form similar

to the Hill’s function, we assume a rate-limiting nucleation mechanism for reaction (4.1).

Figure 4.3 illustrates this mechanism.
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Figure 4.3: An illustration of saturating nucleation kinetics. As the GTP-tubulin con-
centration (Ct) increases, the rate of nucleation initially increases, but eventually reaches
a maximum (kn). When the rate of nucleation is kn

2
, GTP-tubulin concentration equals

km.

And assuming the law of mass action for reactions (4.2), (4.3), and (4.4), the kinetic

equations describing reactions (4.1 - 4.4) are:

dCt

dt
= kcCd − knC

n
t

km + Cn
t

− kgCmCt (4.6a)

dCm

dt
=

knCn
t

km + Cn
t

+ kgCmCt − ksCm (4.6b)

dCd

dt
= ksCm − kcCd, (4.6c)

The parameters used in system (4.6), and their meaning, are summarized in Table 4.1.

System (4.6) is considered with nonnegative initial conditions

Cm(0) ≥ 0; Ct(0) ≥ 0; Cd(0) ≥ 0.
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4.2 Microtubule dynamics in the presence of dynam-

ical instability

In Section 4.1, we have modeled microtubule dynamics in the absence of dynamical

instability. In this section, we now incorporate this process in our models and, thus,

consider microtubules as occurring in two distinct states; namely, growing state, and

shrinking state. The following chemical reactions are considered

(i) Nucleation − n GTP-tubulin dimers, T aggregate at a rate constant kn to form

a nucleus (seed), G - we are taking nucleus to be in the growing state.

nT
kn−→ G (4.7)

(ii) Elongation − a GTP-tubulin dimer adds to the newly formed nucleus or to a

growing microtubule (of any length) at a rate constant kg.

G + T
kg−→ G (4.8)

(iii) Shrinkage − a microtubule in the shrinking state shrinks at a rate constant ks,

losing GDP-tubulin dimer, D.

S
ks−→ S + D (4.9)

(iv) Reactivation − the GDP-tubulin dimers liberated during the shrinkage process

are converted to GTP-tubulin dimers at a rate constant kc. These GTP-tubulin

dimers are then available to be incorporated into the microtubule during the elon-

gation process, or to form new seeds during the nucleation process.

D
kc−→ T (4.10)
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(v) Rescue − a microtubule in the shrinking state switches to the growing state at a

rate constant kres
2

S
kres−→ G (4.11)

(vi) Catastrophe − a microtubule in the growing state switches to the shrinking state

at a rate constant kcat
2

G
kcat−→ S (4.12)

These chemical reactions are represented in Figure 4.4.

Figure 4.4: A flow diagram for the assembly and disassembly of microtubules in the presence of
dynamic instability. Here, G and S denote, respectively, the growing and shrinking microtubule, while
D and T denote the GDP- and GTP-tubulin dimer, respectively. GTP-tubulin dimers aggregate to form
microtubule nuclei from which growing microtubules elongate by addition of more GTP-tubulin dimers.
A growing microtubule may switch to a shrinking one through the catastrophe process. A shrinking
microtubule can also switch to a growing microtubule via the rescue process. A shrinking microtubule
can also undergo shrinkage, losing GDP-tubulin dimers in process. GTP-tubulin dimers are regenerated
when the excess GDP-tubulin dimers interact with GTP molecules.

2kres is the rescue frequency; it is the average number of rescues per unit of time of microtubule shrink-
age. On the other hand, kcat is the catastrophe frequency; namely, the average number of catastrophes
per unit of time of microtubule growth [39].
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We consider four state variables, namely,

(i) Ct(t), the concentration of GTP-tubulin,

(ii) Cd(t), the concentration of GDP-tubulin,

(iii) Cs(t), the concentration of shrinking microtubules, and

(iv) Cg(t), the concentration of growing microtubules.

Model III: Microtubule dynamics with non-saturating nucle-

ation in the presence of dynamical instability

We assume that the law of mass action governs reactions (4.8 - 4.12) and that we have

a non-saturating nucleation mode (Figure 4.2). With these assumptions, the kinetic

equations describing reactions (4.8 - 4.12) are:

dCt

dt
= kcCd − knC

n
t − kgCgCt (4.13a)

dCd

dt
= ksCs − kcCd (4.13b)

dCs

dt
= kcatCg − (kres + ks)Cs (4.13c)

dCg

dt
= knC

n
t + kgCgCt + kresCs − kcatCg (4.13d)

This model has nonnegative initial conditions

Ct(0) ≥ 0, Cd(0) ≥ 0, Cs(0) ≥ 0, Cg(0) ≥ 0.

The parameters used in system (4.13), and their meaning, are summarized in Table 4.1.
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Model IV: Microtubule dynamics with saturating nucleation in

the presence of dynamic instability

This model differs from model III above in the nucleation reaction mechanism. As in

Model II, we assume that the system has a rate-limiting nucleation rate (Figure 4.3).

The model thus becomes

dCt

dt
= kcCd − knCn

t

km + Cn
t

− kgCgCt (4.14a)

dCd

dt
= ksCs − kcCd (4.14b)

dCs

dt
= kcatCg − (ks + kres) Cs (4.14c)

dCg

dt
=

knC
n
t

km + Cn
t

+ (kgCt − kcat)Cg + kresCs, (4.14d)

with the initial conditions

Ct(0) ≥ 0, Cd(0) ≥ 0, Cs(0) ≥ 0, Cg(0) ≥ 0.

A summary of the parameters used in model (4.14) and their meaning is given in Table

4.1.

Model V: Microtubule dynamics with non-saturating nucleation

in the presence of dynamic instability − dependence of kcat and

kres on GTP-tubulin concentration

Following Walker et al. [82], we assume dependence of kcat and kres on the concentration

of GTP-tubulin using linear functions [39]:

kcat = bcat − acatCt,

kres = bres + aresCt,
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where acat, bcat, ares, and bres are positive constants. Thus kcat decreases with increasing

Ct, whereas kres increases with increasing Ct (Figure 4.5).

Figure 4.5: An illustration of the dependence of catastrophe and rescue rates on GTP-tubulin con-
centration.

Substituting these values in system (4.13), we have

dCt

dt
= kcCd − knC

n
t − kgCgCt (4.15a)

dCd

dt
= ksCs − kcCd (4.15b)

dCs

dt
= (bcat − acatCt)Cg − (aresCt + bres + ks)Cs (4.15c)

dCg

dt
= knC

n
t + kgCgCt + (aresCt + bres)Cs − (bcat − acatCt)Cg (4.15d)

System (4.15) is considered with nonnegative initial conditions

Ct(0) ≥ 0, Cd(0) ≥ 0, Cs(0) ≥ 0, Cg(0) ≥ 0.

A summary of the parameters used in model (4.15) and their meaning is given in Table

4.1.
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Symbol Meaning

All models
kn Rate at which GTP-tubulin aggregates to form a nucleus

kg Rate at which a microtubule grows (elongates)

ks Rate at which a microtubule shrinks (disassembles)

kc Rate at which GDP-tubulin is converted to GTP-tubulin

Model II and IV only
km Maximal rate of nucleation

Model III and IV only
kcat Catastrophe frequency

kres Rescue frequency

Model V only
acat Velocity of the catastrophe rate

ares Velocity of the rescue rate

bcat Maximal magnitude of the catastrophe rate

bres Minimal magnitude of the rescue rate

Table 4.1: Parameters used in the models and their meaning
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Chapter 5

Mathematical analysis and

simulation results

In this chapter, we analyze the models developed in Chapter 4. We also give the numerical

simulations and sensitivity analysis results of the models. We conclude the chapter with

a discussion, based on these results, of the emerging scenario from these models.

5.1 Mathematical analysis

Mathematical analysis of model I

dCt

dt
= kcCd − knCn

t − kgCmCt, (5.1a)

dCd

dt
= ksCm − kcCd, (5.1b)

dCm

dt
= knC

n
t + kgCmCt − ksCm, (5.1c)

Cm(0) ≥ 0, Ct(0) ≥ 0, Cd(0) ≥ 0.
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Summing the three equations in system (5.1), the conservation equation

d

dt
[Ct(t) + Cd(t) + Cm(t)] = 0

is obtained. This implies that the total concentration of all the variables in system (5.1)

is a positive constant; that is,

Ct(t) + Cd(t) + Cm(t) = C0, ∀ t ≥ 0. (5.2)

It is first noted that the origin (0, 0, 0) is an equilibrium solution of (5.1). This is

the trivial equilibrium point, corresponding to the absence of the quantities represented

by the variables of system (5.1). The Jacobian matrix of system (5.1), evaluated at the

origin, is given by

J(0,0,0) =




0 kc 0

0 −kc ks

0 0 −ks




This matrix has two negative eigenvalues, −kc and −ks, and one zero eigenvalue. Thus

(0, 0, 0) is a non-hyperbolic equilibrium solution. The stable manifold theorem (Theo-

rem 2.3.1) implies that there exists a local two-dimensional stable manifold through the

origin. That is, all trajectories asymptotically approaching the origin as t →∞ lie on a

two-dimensional invariant manifold. Further, by the centre manifold theorem (Theorem

2.3.2), the topology of the flow near the origin is characterized by a one-dimensional

local centre manifold intersecting the origin. Since the presence of a zero eigenvalue is

a direct consequence of the conservation of mass, we conclude that the origin is locally

asymptotically stable.

Remark 5.1.1. Note that the trivial equilibrium corresponds to the case when C0 = 0;

that is, when there is no tubulin in the experiment.

We now look for the non-trivial equilibrium solution(s) of (5.1); that is, the case when

C0 > 0.
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The set

Ω̂ΩΩ = {(Ct, Cd, Cm) ∈ R3
+ : Ct ≥ 0; Cd ≥ 0; Cm ≥ 0; Ct + Cd + Cm = C0},

where R3
+ denotes the nonnegative orthant of R3, is positively invariant under the flow

induced by (5.1). It therefore follows that system (5.1) is well posed with bounded

solutions. Using (5.2), we can replace Cm with C0 − Ct − Cd in (5.1) to obtain a two-

dimensional system

dCt

dt
= kcCd − knC

n
t − kgCt(C0 − Ct − Cd)

dCd

dt
= ks(C0 − Ct − Cd)− kcCd

That is

dCt

dt
= kcCd − knC

n
t + kgC

2
t − (C0 − Cd)kgCt (5.3a)

dCd

dt
= (C0 − Ct)ks − (ks + kc)Cd (5.3b)

It is convenient to describe system (5.1) in terms of relative proportions; that is,

C̄t =
Ct

C0

, C̄d =
Cd

C0

, C̄m =
Cm

C0

.

This gives the evident conditions

C̄t ≤ 1, C̄d ≤ 1, C̄m ≤ 1, C̄t + C̄d + C̄m = 1,

and system (5.3) can be expressed as

dC̄t

dt
= kcC̄d − knC

n−1
0 C̄n

t + kgC0C̄
2
t − (1− C̄d)kgC0C̄t

dC̄d

dt
= (1− C̄t)ks − (ks + kc)C̄d

Dropping the bars, for notational simplicity, we have

dCt

dt
= kcCd − knC

n−1
0 Cn

t + kgC0C
2
t − (1− Cd)kgC0Ct (5.4a)

dCd

dt
= (1− Ct)ks − (ks + kc)Cd (5.4b)
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The set

ΩΩΩ = {(Ct, Cd) ∈ R2
+ : Ct ≥ 0; Cd ≥ 0; Ct + Cd ≤ 1}

is positively invariant under the flow of system (5.4); that is, solutions starting in ΩΩΩ

remain there forever. Therefore, (5.4) is well posed, with bounded solutions.

Remark 5.1.2. From (5.4), the dynamics of Cm (in proportions) is deduced from

Cm(t) = 1− Ct(t)− Cd(t).

The equivalence of system (5.1) and system (5.4) is thus established by noting that the

solutions of (5.1) can be obtained from the solutions of (5.4) together with (5.2). That

is, by multiplying the solutions of (5.4) by C0 and using (5.2), we have the solutions of

(5.1).

Let us now analyze system (5.4).

Equilibrium of system (5.4)

Theorem 5.1.3. If C0 > 0, then on the set ΩΩΩ, system (5.4) admits a unique positive

equilibrium

E∗
1 =

(
C∗

t ,
ks(1− C∗

t )

ks + kc

)
,

where C∗
t is the unique positive root in the interval (0, 1) to the equation

(ks + kc)knC
n−1
0 Cn

t − kckgC0C
2
t + (kgC0 + ks)kcCt − kskc = 0

In particular,

C∗
t ∈

(
0, min

(
1,

ks

kgC0

))
.

Proof. Suppose that C0 > 0. Setting the time derivatives in Eqs. (5.4a) and (5.4b)

equal to zero, we obtain

kcCd − knC
n−1
0 Cn

t + kgC0C
2
t − (1− Cd)kgC0Ct = 0 (5.5a)

(1− Ct)ks − (ks + kc)Cd = 0 (5.5b)
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From Eq. (5.5b), we have

Cd =
ks

ks + kc

(1− Ct)

Substituting this value of Cd in Eq. (5.5a) and simplifying, we obtain an n-th degree

polynomial in Ct:

(ks + kc)knC
n−1
0 Cn

t − kckgC0C
2
t + (kgC0 + ks)kcCt − kskc = 0 (5.6)

Thus, the positive roots, C∗
t , of Eq. (5.6) are the Ct-components of the equilibrium

solutions of (5.5).

Let us write the left hand side of Eq. (5.6) as a difference of two polynomials P1(Ct) −
P2(Ct), where

P1(Ct) = (ks + kc)knCn−1
0 Cn

t

and

P2(Ct) = kc

[
kgC0C

2
t − (kgC0 + ks)Ct + ks

]

The polynomial P1 is an increasing function on R+ such that P1(0) = 0.

On the other hand, P2 is a quadratic polynomial such that

· P2(0) = kskc > 0,

· its roots are 1 and ks

kgC0
, both positive,

· it is upwardly concave with a critical value at Ct = kgC0+ks

2kgC0
,

· it is decreasing on
(
0, kgC0+ks

2kgC0

)
and increasing on

(
kgC0+ks

2kgC0
,∞

)
, and

· it is positive on
(
0, min

(
1, ks

kgC0

))
and

(
max

(
1, ks

kgC0

)
,∞

)
.

It follows that P1 and P2 have a unique intersection for 0 < Ct < min
(
1, ks

kgC0

)
. The

second positive intersection, if it exists, has Ct > max
(
1, ks

kgC0

)
≥ 1. Since the state

variables in (5.4) are in proportions, a biologically meaningful equilibrium must satisfy

the condition Ct ≤ 1. Consequently, C∗
t is unique and satisfies

0 < C∗
t < min

(
1,

ks

kgC0

)
, (5.7)

This completes the proof of Theorem 5.1.3. 2

Biological Remark. The ratio ks

kg
is termed the critical concentration of GTP-tubulin
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Figure 5.1: Illustrations of the functions P1(Ct) and P2(Ct) of Eq. (5.6)

dimers [80, 82] and is usually denoted by Cc. At GTP-tubulin concentrations above Cc,

the GTP-tubulin dimers assemble into microtubules, while below the Cc, microtubules

disassemble. At concentrations near Cc, some microtubules assemble, while others disas-

semble. Since we are working in proportions, the term ks

kgC0
on the right hand side of (5.7)

agrees perfectly with theoretical and experimental results in literature. For example, Bi-

cout & Rubin [9] point out that below the critical concentration and in the presence of

nucleation sites (nucleus), a stable population of microtubules will be maintained as long

as the GTP-tubulin concentration is maintained.

Stability analysis of E∗
1

Theorem 5.1.4. The equilibrium solution E∗
1 of system (5.4) is globally asymptotically

stable with respect to the set ΩΩΩ.

Proof. The Jacobian of system (5.4) is

J =




−nkn(C0Ct)
n−1 + (2Ct + Cd − 1)kgC0 kgC0Ct + kc

−ks −(ks + kc)



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Evaluated at the equilibrium E∗
1 , the Jacobian becomes

JE∗1 =




−nkn(C0C
∗
t )n−1 +

[
2C∗

t − (ksC∗t +kc)

ks+kc

]
kgC0 kgC0C

∗
t + kc

−ks −(ks + kc)




The trace of JE∗1 ,

tr(JE∗1 ) = −nkn(C0C
∗
t )n−1 +

[
2C∗

t −
(ksC

∗
t + kc)

ks + kc

]
kgC0 − ks − kc

= −nkn(C0C
∗
t )n−1 +

(ks + 2kc)kgC0

ks + kc

C∗
t −

[
kckgC0

ks + kc

+ ks + kc

]
,

can be written as a difference of two polynomials P3(C
∗
t )− P4(C

∗
t ), where

P3(C
∗
t ) =

(ks + 2kc)kgC0

ks + kc

C∗
t −

(
kckgC0

ks + kc

+ ks + kc

)
,

and

P4(C
∗
t ) = nkn(C0C

∗
t )n−1

Then the sign of tr(JE∗1 ) depends on the relative positions of the graphs of P3 and P4.

Now P3 is a straight line with a positive slope and negative intercept. It is negative for

P3(ct)

P4(ct)

c
int1

t

ct

Figure 5.2: Illustrations of the functions P3(Ct) and P4(Ct) of the trace of JE∗1
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all C∗
t < C int1

t , where

C int1
t =

(ks + kc)
2 + kckgC0

(ks + 2kc)kgC0

P4, on the other hand, is an increasing function with P4(0) = 0. Thus, P4 > 0, ∀ C∗
t > 0

and, therefore,

∀ C∗
t ∈

[
0, C int1

t

]
, P3(C

∗
t ) < P4(C

∗
t ),

which implies that

∀ C∗
t ∈

[
0, C int1

t

]
, tr(JE∗1 ) < 0

Recall, from (5.7), that C∗
t < 1. Hence if C int1

t ≥ 1, we have that tr(JE∗1 ) < 0. Now

suppose that C int1
t < 1; then,

ks + kc < kgC0 (5.8)

And using (5.7), we deduce that, in this case, min
(
1, ks

kgC0

)
= ks

kgC0
; that is, C∗

t ∈
(
0, ks

kgC0

)
.

There are two possibilities for the relative positions of ks

kgC0
and C int1

t along the Ct-axis.

(a) ks

kgC0
< C int1

t − in this case, it follows that
(
0, ks

kgC0

) ⊂ [
0, C int1

t

]
. Thus for any C∗

t ,

P3(C
∗
t )− P4(C

∗
t ) < 0.

(b) ks

kgC0
> C int1

t − in this case, kgC0 < −kc, contradicting inequality (5.8). We therefore

rule out this possibility.

It follows that tr(JE∗1 ) < 0. From Bendixson’s criterion (Theorem 2.4.7), it follows that

there are no non-constant periodic solutions in the positive quadrant. We have shown

that the solutions to system (5.4) are bounded. Furthermore, we have established, from

Theorem 5.1.3, that E∗
1 is unique. By Poincaré-Bendixson theorem (Theorem 2.4.3),

it follows that all trajectories limit to the equilibrium E∗
1 ; that is, that E∗

1 is globally

asymptotically stable. This completes the proof of Theorem 5.1.4. 2

Remark 5.1.5. From Remark 5.1.2, the following theorem on the uniqueness and sta-

bility of the equilibrium solution of system (5.1) is trivially true.
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Theorem 5.1.6. If C0 > 0, then on the set Ω̂ΩΩ, system (5.1) has a unique positive

equilibrium solution

E∗∗
1 =

(
C0C

∗
t ,

ksC0(1− C∗
t )

ks + kc

,
kcC0(1− C∗

t )

ks + kc

)
,

where C∗
t is the unique positive root in the interval

(
0, min

(
1,

ks

kgC0

))

to the equation

(ks + kc)knCn−1
0 Cn

t − kckgC0C
2
t + (kgC0 + ks)kcCt − kskc = 0.

Furthermore, E∗∗
1 is globally asymptotically stable with respect to the set Ω̂ΩΩ.

Mathematical analysis of model II

Using rigorous numerical simulations (see in Section 5.2), we established that nucleation

has insignificant effect on the overall microtubule dynamics. For this reason, we analyze

model II for the special case when n = 1. Model II then becomes

dCt

dt
= kcCd − knCt

km + Ct

− kgCmCt (5.9a)

dCd

dt
= ksCm − kcCd (5.9b)

dCm

dt
=

knCt

km + Ct

+ kgCmCt − ksCm (5.9c)

Cm(0) ≥ 0; Ct(0) ≥ 0; Cd(0) ≥ 0.

The law of conservation of mass is satisfied in system (5.9); that is, the relation

d

dt
[Ct(t) + Cd(t) + Cm(t)] = 0
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holds, implying that the total concentration of all the variables in the system is a constant:

Cm(t) + Ct(t) + Cd(t) = C0 > 0, ∀ t ≥ 0. (5.10)

Obviously, the origin (0, 0, 0) is the trivial equilibrium solution of (5.9). This equilibrium

corresponds to the case when C0 = 0; that is, the case when there is no tubulin in the

experiment.

The Jacobian matrix of system (5.9), evaluated at the origin, is given by

J(0,0,0) =




− kn

km
kc 0

0 −kc ks

kn

km
0 −ks




The characteristic equation of the Jacobian is

kmλ3 + λ2(kckm + kskm + kn) + λ(kmkcks + kckn + kskn) = 0,

whose roots are

λ1 = 0,

λ2 =
−(kckm + kskm + kn) +

√
(kckm + kskm − kn)2 − 4kcksk2

m

2km

,

and

λ3 =
−(kckm + kskm + kn)−

√
(kckm + kskm − kn)2 − 4kcksk2

m

2km

.

Since

√
(kckm + kskm − kn)2 − 4kcksk2

m <
√

(kckm + kskm − kn)2 = kckm + kskm − kn,
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it follows that

λ2 < − kn

km

and λ3 < −(kc + ks)

Thus, the Jacobian matrix has two negative eigenvalues, λ2 and λ3, and one zero eigen-

value, implying that (0, 0, 0) is a non-hyperbolic equilibrium solution. The zero eigen-

value comes from the conservation of mass. By the stable and centre manifold theo-

rems (Theorems 2.3.1 and 2.3.2, respectively), there exists a local two-dimensional stable

manifold through the origin, and a one-dimensional local centre manifold tangent to the

eigenspace associated to λ1. We therefore conclude that the origin is locally asymptoti-

cally stable.

Let us now look for the non-trivial equilibrium solution(s) of (5.9); that is, the equilib-

rium solution(s) of (5.9) when C0 > 0.

The set

Ω̌ΩΩ = {(Ct, Cd, Cm) ∈ R3
+ : Ct ≥ 0; Cd ≥ 0; Cm ≥ 0; Ct + Cd + Cm = C0}

is positively invariant under the flow of (5.9). It thus follows that system (5.9) is well

posed with bounded solutions. Using (5.10), we can reduce system (5.9) to a two-

dimensional system of differential equations by dropping the equation for Cm to obtain

dCt

dt
= kcCd − knCt

km + Ct

− (C0 − Ct − Cd)kgCt (5.11a)

dCd

dt
= (C0 − Ct − Cd)ks − kcCd (5.11b)

Let us define the variables Cm, Ct, and Cd of system (5.9) in terms of proportions:

C̃m =
Cm

C0

, C̃t =
Ct

C0

, C̃d =
Cd

C0

,
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with

C̃m + C̃t + C̃d = 1

Then, after dropping the tildes for notational simplicity, system (5.11) becomes

dCt

dt
= (kgC0Ct + kc)Cd − knCt

km + C0Ct

− (1− Ct)kgC0Ct (5.12a)

dCd

dt
= (1− Ct)ks − (ks + kc)Cd (5.12b)

The set

Ω̃ΩΩ = {(Ct, Cd) ∈ R2
+ : Ct ≥ 0; Cd ≥ 0; Ct + Cd ≤ 1}

is positively invariant under the flow of (5.12). Therefore, (5.12) is well posed, with

bounded solutions.

Remark 5.1.7. From (5.10), the dynamics of Cm (in proportions) is deduced from

Cm(t) = 1− Ct(t)− Cd(t).

The equivalence of system (5.9) and system (5.12) is thus established by noting that the

solutions of (5.9) can be obtained from the solutions of (5.12) together with (5.10). That

is, multiplying the solutions of (5.12) by C0 and using (5.10), we have the solutions of

(5.9).

We now consider the analysis of system (5.12).

Equilibrium of system (5.12)

Theorem 5.1.8. If C0 > 0, then on the set Ω̃ΩΩ, system (5.12) has a unique positive

equilibrium

E∗
2 =

(
C∗

t ,
(1− C∗

t )ks

ks + kc

)
,

74



where C∗
t is the unique positive root in the interval (0, 1) to the cubic equation

kckgC
2
0C

3
t − [ks − (km − C0)kg] kcC0C

2
t + kmkskc

− [(ks + kc)kn + (kgC0 + ks)kmkc − kskcC0] Ct = 0.

Proof. Setting the left-hand sides of system (5.12) to zero, we obtain

0 = (kgC0Ct + kc)Cd − knCt

km + C0Ct

− (1− Ct)kgC0Ct (5.13a)

0 = (1− Ct)ks − (ks + kc)Cd (5.13b)

From (5.13b), we have that

Cd =
(1− Ct)ks

ks + kc

Substituting this value in Eq. (5.13a) and simplifying the resulting equation, we obtain

kckgC
2
0C

3
t − [ks − (km − C0)kg] kcC0C

2
t + kmkskc

− [(ks + kc)kn + (kgC0 + ks)kmkc − kskcC0] Ct = 0 (5.14)

The LHS of Eq. (5.14) can be written as a difference of two polynomials Φ3(Ct)−Φ4(Ct),

where

Φ3(Ct) = kckgC
2
0C

3
t + kmkskc

and

Φ4(Ct) = [ks − (km − C0)kg] kcC0C
2
t

+ {[(km − C0)kc + kn] ks + (kmkgC0 + kn)kc}Ct
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Now, Φ3(Ct) is, for all values of Ct, an increasing polynomial function with Φ3(0) =

kmkskc > 0. On the other hand, the zeros of Φ4(Ct) are 0 and C int2
t , where

C int2
t =

[(km − C0)kc + kn] ks + (kmkgC0 + kn)kc

[(km − C0)kg − ks] kcC0

=
(kmkg − ks)kcC0 + (ks + kc)kn + kmkskc

(kmkg − ks)kcC0 − kgkcC2
0

We consider the following two cases:

Case I: km > ks

kg
+ C0. In this case,

– The above expression for C int2
t must be greater than one because the numerator

is greater than the denominator.

– The critical value of Φ4; namely

Ccrit2
t =

[(km − C0)kc + kn] ks + (kmkgC0 + kn)kc

2kcC0 [(km − C0)kg − ks]
,

is positive, and

– Φ4 is concave downwards on (−∞,∞), increasing on
(−∞, Ccrit2

t

)
and decreas-

ing on
(
Ccrit2

t ,∞)
.

In Figure 5.3a, the functions Φ3(Ct) and Φ4(Ct) are sketched. Both functions are mono-

tonically increasing in Ct for all Ct ∈
(
0, Ccrit2

t

)
.

Since

0 = Φ4(0) < Φ3(0) = kmkskc

and

kckgC
2
0 + kmkskc = Φ3(1) < Φ4(1) = kckgC

2
0 + kmkskc + (ks + kc)kn,

a unique intersection (at Ct = C∗
t ∈ (0, 1)) of the curves defined by the functions Φ3(Ct)

and Φ4(Ct) exists.
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Φ4(ct)

Φ3(ct)

ct

c
crit2

t

kmkskc

(a) The case when km > ks

kg
+ C0

1
ct

kmkskc

Φ4(ct)

Φ3(ct)

(b) The case when km < ks

kg
+ C0

Figure 5.3: Illustration of the functions Φ3(Ct) and Φ4(Ct) of Eq. (5.14).

Case II: km < ks

kg
+ C0. In this case,

– both C int2
t and Ccrit2

t are negative,

– Φ4 is concave upwards at Ccrit2
t , decreasing on

(−∞, Ccrit2
t

)
and increasing on

(
Ccrit2

t ,∞)
, and

– Φ4 is positive for all Ct > 0.

In Figure 5.3b, the functions Φ3(Ct) and Φ4(Ct) are sketched. Since

· both functions are monotonically increasing in Ct on (0, 1),

· 0 = Φ4(0) < Φ3(0) = kmkskc, and

· kckgC
2
0 + kmkskc = Φ3(1) < Φ4(1) = kckgC

2
0 + kmkskc + (ks + kc)kn,

a unique intersection (at Ct = C∗
t ∈ (0, 1)) of the curves defined by the functions Φ3(Ct)

and Φ4(Ct) exists.

Combining Case I and II, it follows that the functions Φ3 and Φ4 have a unique inter-

section point for 0 < Ct < 1. The other intersection points are outside the interval (0, 1)

and are thus biologically irrelevant. Consequently, system (5.12) has a unique positive

equilibrium

E∗
2 =

[
C∗

t ,
(1− C∗

t )ks

ks + kc

]
,
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where C∗
t is the positive root to the cubic equation (5.14) satisfying 0 < C∗

t < 1. This

completes the proof of Theorem 5.1.8. 2

Stability analysis of E∗
2

Theorem 5.1.9. Providing that

ks + kc > kgC0,

the equilibrium solution E∗
2 of system (5.12) is globally asymptotically stable with respect

to the set Ω̃ΩΩ.

Proof. Computing the linearization matrix of system (5.12) around the equilibrium

solution E∗
2 =

[
C∗

t ,
(1−C∗t )ks

ks+kc

]
we get

JE∗2 =




− kmkn

(km+C0C∗t )2
+

[(ks+2kc)C∗t −kc]kgC0

ks+kc
kgC0C

∗
t + kc

−ks −(ks + kc)




Now, the trace of JE∗2 is given by

tr(JE∗2 ) = − kmkn

(km + C0C∗
t )2

+
[(ks + 2kc)C

∗
t − kc]kgC0

ks + kc

− (ks + kc)

=
(km + C0C

∗
t )2 [(ks + 2kc)kgC0C

∗
t − kckgC0 − (ks + kc)

2]− kmkn(ks + kc)

(km + C0C∗
t )2(ks + kc)

=
(km + C0C

∗
t )2

{
(ks + kc)

[
kgC0C

∗
t − ks − kc

]− kckgC0(1− C∗
t )

}− kmkn(ks + kc)

(km + C0C∗
t )2(ks + kc)

Imposing the condition

kgC0C
∗
t < ks + kc,
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the numerator of the above expression will be negative (recall that C∗
t ∈ (0, 1)). Therefore,

C∗
t <

ks + kc

kgC0

⇒ tr(JE∗2 ) < 0 .

Taking ks + kc > kgC0, it follows that ks+kc

kgC0
> 1 and, hence, the condition

C∗
t <

ks + kc

kgC0

is satisfied (because 0 < C∗
t < 1 ). Consequently, tr(JE∗2 ) < 0 and, from Bendixson’s cri-

terion (Theorem 2.4.7), it follows that (5.12) has no nontrivial periodic solutions in R2
+

for all Ct ∈ (0, 1), provided that ks+kc > kgC0. Since E∗
2 is unique, it follows by Poincaré-

Bendixson theorem (Theorem 2.4.3) that all trajectories limit to the equilibrium E∗
2 ; that

is, that E∗
2 is globally asymptotically stable. This completes the proof of Theorem 5.1.9.2

Theorem 5.1.10. If C0 > 0, then on the set Ω̌ΩΩ, system (5.9) has a unique positive

equilibrium solution

E∗∗
2 =

(
C0C

∗
t ,

ksC0(1− C∗
t )

ks + kc

,
kcC0(1− C∗

t )

ks + kc

)
,

where C∗
t is the unique positive root in the interval (0, 1) to the cubic equation

kckgC
2
0C

3
t − [ks − (km − C0)kg] kcC0C

2
t + kmkskc

− [(ks + kc)kn + (kgC0 + ks)kmkc − kskcC0] Ct = 0.

Furthermore, providing that ks + kc > kgC0, E∗∗
2 is globally asymptotically stable with

respect to the set Ω̌ΩΩ.

Proof. This follows from remark 5.1.7. 2
We mention here that on the basis of Theorem 5.1.9, we cannot provide a complete
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analysis of the equilibria E∗
2 and E∗∗

2 . In other words, the theorem is silent on the

stability of the equilibrium E∗
2 in the case when ks + kc < kgC0 holds. In order to

gain further insight on the asymptotic behaviour of the equilibrium solution E∗∗
2 , we will

conduct numerical simulations on the model for both the case when ks + kc > kgC0 and

the case when ks + kc < kgC0.

Mathematical analysis of model III

We now analyze Model III for the special case n = 1; that is, we assume that the

nucleation rate, kn, linearly depends on the GTP-tubulin concentration. Then, system

(4.13) becomes

dCt

dt
= kcCd − knCt − kgCgCt (5.15a)

dCd

dt
= ksCs − kcCd (5.15b)

dCs

dt
= kcatCg − (kres + ks)Cs (5.15c)

dCg

dt
= knCt + kgCgCt + kresCs − kcatCg (5.15d)

Ct(0) ≥ 0, Cd(0) ≥ 0, Cs(0) ≥ 0, Cg(0) ≥ 0.

Summing the four equations in system (5.15), the conservation equation

d

dt
[Ct(t) + Cd(t) + Cs(t) + Cg(t)] = 0

is obtained. This implies that the total concentration of all the variables in system (5.15)

is a constant,

Ct(t) + Cd(t) + Cs(t) + Cg(t) = C0 > 0, ∀ t ≥ 0.

The origin (0, 0, 0, 0) is the trivial equilibrium solution of (5.15). This equilibrium

corresponds to the case when the concentration of each variable in system (5.15) is equal

to zero; that is, when C0 = 0.
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The Jacobian matrix of system (5.15), evaluated at the point (0, 0, 0, 0), is given by

J(0,0,0,0) = J0 =




−kn kc 0 0

0 −kc ks 0

0 0 −(kres + ks) kcat

kn 0 kres −kcat




The matrix J0 is singular, implying that 0 is an eigenvalue of J0 associated with the

left (row) eigenvector [1 1 1 1]. Furthermore, the digraph, D(J0), associated with J0

is strongly connected, which implies that J0 is irreducible. Consequently, 0 is a simple

eigenvalue of J0 [32]. This zero eigenvalue corresponds to the conservation of mass.

Using Gershgorin theorem1, we know that all the eigenvalues of J0 have nonpositive real

parts. In particular, defining

k̂ = max {kn, kc, kres + ks, kcat} , (5.16)

all Gershgorin discs are contained in the disc centred at −k̂ with radius k̂.

We now need to show that [1 1 1 1] is (to a scalar) the only strictly positive2 eigenvector

of J0. We “shift” the matrix J0 by a multiple of the identity matrix I to make all of its

elements nonnegative. Thus, we consider the matrix J0 + k̂I, where k̂ is given by (5.16).

The new matrix J0 + k̂I inherits some spectral properties of an irreducible matrix. In

particular, J0+ k̂I is irreducible, since the irreducibility of J0 is not affected by modifying

1

Theorem (Gershgorin). [35] If A = (aij) is an n× n matrix, then all the eigenvalues of A are located
in the union of n discs ∪n

j=1Dj(A) where

Dj(A) =
{

z ∈ C : |z − ajj | ≤
n∑

i=1
i 6=j

|aij |
}

, j = 1, 2, · · · , n.

Furthermore, if a union of k of these n disks forms a connected region that is disjoint from all the
remaining n− k discs, then there are precisely k eigenvalues of A in this region.

2A vector xxx = (x1, · · · , xn) is said to be strictly (or strongly) positive, and we write xxx À 0 if xi > 0
for all i = 1, · · · , n.
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its diagonal entries.

By Perron-Frobenius theorem3,

– the spectral radius of J0 + k̂I is a positive simple eigenvalue of J0 + k̂I strictly

exceeding in modulus all other eigenvalues of J0 + k̂I;

– there exists a positive eigenvector v corresponding to the eigenvalue ρ(J0 + k̂I);

– any other nonnegative eigenvector of J0 + k̂I is a multiple of v.

Using a left eigenvector, we have

vT (J0 + k̂I) = ρ(J0 + k̂I)vT

for vT À 0 unique to a scalar multiple.

Since

[1 1 1 1](J0 + k̂I) = [1 1 1 1]J0 + k̂[1 1 1 1] = k̂[1 1 1 1],

it follows that ρ(J0 + k̂I) = k̂ and vT = [1 1 1 1] is the eigenvector corresponding to

the spectral radius k̂ of J0 + k̂I. We note that the spectra (the sets of all eigenvalues)

σ(J0) and σ(J0 + k̂I) of J0 and J0 + k̂I, respectively, are translations of k̂, which implies

that [1 1 1 1] is the only strictly positive (left) eigenvector of J0, and is associated to the

eigenvalue 0.

Consequently, since σ(J0) and σ(J0 + k̂I) are translations of k̂, 0 is the dominant eigen-

value of J0 and is of multiplicity 1, and all other eigenvalues of J0 have negative real

parts.

By the stable and centre manifold theorems (Theorems 2.3.1 and 2.3.2, respectively), we

3

Theorem (Perron-Frobenius). [71] If A = (aij) is an n × n nonnegative matrix, then r = ρ(A) is an
eigenvalue of A and there is a corresponding eigenvector v > 0. If, in addition, A is irreducible, then
r > 0 and v À 0. Moreover, r has algebraic multiplicity one and if u > 0 is an eigenvector of A, then
there exists s > 0 such that u = sv. If B is a matrix satisfying B > A, then ρ(B) > ρ(A). Finally, if
A À 0 then |λ| < r for all other eigenvalues of A.

82



deduce that there exists a local three-dimensional stable manifold through (0, 0, 0, 0)

and a one-dimensional local centre manifold tangent to the eigenspace associated to the

zero eigenvalue. It therefore follows that the origin is locally asymptotically stable.

We now turn to the search for the non-trivial equilibrium solution(s) of (5.15) − corre-

sponding to the case C0 > 0.The set

ΩΩΩ = {(Ct, Cd, Cs, Cg) ∈ R4
+ : Ct ≥ 0; Cd ≥ 0; Cs ≥ 0; Cg ≥ 0; Ct + Cd + Cs + Cg = C0}

is positively invariant under the flow induced by system (5.15). It thus follows that

system (5.15) is well posed with bounded solutions. Let us replace Cg in (5.15) with

C0 − Ct − Cd − Cs to obtain a three-dimensional system

dCt

dt
= kcCd − knCt − (C0 − Ct − Cd − Cs)kgCt

dCd

dt
= ksCs − kcCd

dCs

dt
= kcat(C0 − Ct − Cd − Cs)− (kres + ks)Cs

That is

dCt

dt
= kcCd − knCt − (C0 − Ct)kgCt + (Cd + Cs)kgCt (5.17a)

dCd

dt
= ksCs − kcCd (5.17b)

dCs

dt
= (C0 − Ct)kcat − kcatCd − (kcat + kres + ks)Cs (5.17c)

It is convenient to describe system (5.17) in terms of relative proportions; that is,

C̄t =
Ct

C0

; C̄d =
Cd

C0

; C̄s =
Cs

C0

.
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With this transformation, system (5.17) becomes (after dropping the bars for notational

simplicity)

dCt

dt
= kcCd − knCt − (1− Ct)kgC0Ct + (Cs + Cd)kgC0Ct (5.18a)

dCd

dt
= ksCs − kcCd (5.18b)

dCs

dt
= (1− Ct − Cd)kcat − (kcat + kres + ks)Cs (5.18c)

The set

Ω̆ΩΩ = {(Ct, Cd, Cs) ∈ R3
+ : Ct ≥ 0; Cd ≥ 0; Cs ≥ 0; Ct + Cd + Cs ≤ 1}

is positively invariant with respect to system (5.18).

Equilibrium of system (5.18)

Theorem 5.1.11. If C0 > 0, then on the set Ω̆ΩΩ, system (5.18) admits a unique positive

equilibrium

E∗
3 = (C∗

t , C∗
d , C∗

s ) =

(
C∗

t ,
kskcat

κ
(1− C∗

t ),
kckcat

κ
(1− C∗

t )

)
,

where κ = kskcat + (kcat + kres + ks)kc and C∗
t is the unique positive root in the interval

(0, 1] to the equation

(kres + ks)kgkcC0C
2
t − [κkn + (kres + ks)kgkcC0 + kskckcat] Ct + kskckcat = 0.

Proof. The equilibrium solutions satisfy the following relations:

0 = kcCd − knCt − (1− Ct)kgC0Ct + (Cs + Cd)kgC0Ct (5.19a)

0 = ksCs − kcCd (5.19b)

0 = (1− Ct)kcat − kcatCd − (kcat + kres + ks)Cs (5.19c)
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From Eq. (5.19b),

Cs =
kc

ks

Cd

Substituting this value in Eq. (5.19c) and solving for Cd gives

Cd =
kskcat

κ
(1− Ct) (5.20)

where

κ = kskcat + (kcat + kres + ks)kc (5.21)

Hence

Cs =
kckcat

κ
(1− Ct) (5.22)

Replacing the values of Cd and Cs in Eq. (5.19a) with (5.20) and (5.22), respectively,

gives

−κknCt + EC2
t − (E + F )Ct + F = 0 (5.23)

where

E = (kres + ks)kgkcC0, (5.24)

and

F = kskckcat. (5.25)

The positive roots, C∗
t ∈ (0, 1], of Eq. (5.23) are the Ct components of the equilibrium

solutions of (5.19).

The LHS of Eq. (5.23) can be written as a difference of two polynomials P8(Ct)−P7(Ct),

where

P8(Ct) = EC2
t − (E + F )Ct + F

and

P7(Ct) = κknCt
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P7 is linear and monotonically increasing in Ct for all Ct ∈ (0, 1] and P7(0) = 0,

implying that P7(Ct) > 0 for all Ct ∈ (0, 1].

On the other hand, P8 is quadratic in Ct, is concave upwards, and cuts the vertical axis

at F > 0. Furthermore, P8(Ct)

– cuts the Ct-axis at Ct = 1 and Ct = F
E

> 0;

– is decreasing on the interval
(
0, E+F

2E

)
and increasing on the interval

(
E+F
2E

,∞)
, and

– is positive on the intervals
(
0, min(1, F

E
)
)

and
(
max(1, F

E
), ∞)

.

We consider the following two cases.

Case I: min(1, F
E

) = F
E

. In this case (see Figure 5.4a),

– P8(Ct) > 0, ∀ Ct ∈
(
0, F

E

) ⊂ (0, 1),

– P7(Ct) > 0, ∀ Ct ∈ (0, 1),

– P7(Ct) is monotonically increasing in Ct on (0, 1), and

– P8(Ct) is monotonically decreasing in Ct on
(
0, F

E

)
.

Since

0 = P7(0) < P8(0) = F,

and

κkn = P7(1) > P8(1) = 0,

it follows that P7(Ct) and P8(Ct) have a unique intersection at 0 < C∗
t < F

E
on

(0, 1). The other intersection point, if it exists, is biologically irrelevant since the

state variables in system (5.18) are in proportions.

Case II: min(1, F
E

) = 1. In this case (see Figure 5.4b),

– P8(Ct) > 0, ∀ Ct ∈ (0, 1),

– P7(Ct) > 0, ∀ Ct ∈ (0, 1),
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– P7(Ct) is monotonically increasing in Ct on (0, 1), and

– P8(Ct) is monotonically decreasing in Ct on (0, 1).

Since

0 = P7(0) < P8(0) = F,

and

κkn = P7(1) > P8(1) = 0,

it follows that P7(Ct) and P8(Ct) have a unique intersection at 0 < C∗
t < 1. The

other intersection point, if it exists, is biologically irrelevant.

Combining Case I and II, it follows that P7(Ct) and P8(Ct) have a unique intersection at

0 < C∗
t < min

(
1,

F

E

)
.

To obtain the precise expression of C∗
t , we write Eq. (5.23) as

F

E

1E+F

2E

P7(ct)

P8(ct)

ct

F

(a) The case when min(1, F
E ) = F

E

1 E+F

2E

P7(ct)

P8(ct)

ct

F

F

E

(b) The case when min(1, F
E ) = 1

Figure 5.4: Illustration of the functions P7(Ct) and P8(Ct) of Eq. (5.23).

EC2
t − (κkn + E + F )Ct + F = 0 (5.26)
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and solve (5.26) for Ct to obtain the roots C∗
t and Cu

t (C∗
t < Cu

t ), where

C∗
t =

κkn + E + F −
√

(κkn + E + F )2 − 4EF

2E
;

that is,

C∗
t =

κkn + E + F −
√

(κkn + E − F )2 + 4κknF

2E

⇒ C∗
t <

κkn + E + F − (κkn + E − F )

2E
=

F

E
(Recall that

F

E
> 0)

and

Cu
t =

κkn + E + F +
√

(κkn + E − F )2 + 4κknF

2E

⇒ Cu
t >

κkn + E + F + (κkn + E − F )

2E
= 1 +

κkn

E
> 1

Consequently, system (5.18) has a unique positive equilibrium

E∗
3 =

(
C∗

t ,
kskcat

κ
(1− C∗

t ) ,
kckcat

κ
(1− C∗

t )

)
,

where κ is given by (5.21) and

C∗
t =

κkn + E + F −
√

(κkn + E + F )2 − 4EF

2E
∈

(
0, min

(F

E
, 1

))

This completes the proof of Theorem 5.1.11. 2

Remark 5.1.12. With respect to system (5.15), the unique positive equilibrium is given

by

E∗∗
3 =

(
C0C

∗
t ,

kskcatC0

κ
(1− C∗

t ) ,
kckcatC0

κ
(1− C∗

t ) ,
(kres + ks)kcC0

κ
(1− C∗

t )

)
,
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where C∗
t is the unique positive root in the interval (0, 1) to the equation (5.23). This is

obtained by multiplying each component in the equilibrium solution of (5.18) by C0 and

using the fact that Cg(t) = C0 − Cs(t)− Ct(t)− Cd(t).

Stability analysis of E∗
3

Theorem 5.1.13. The unique positive equilibrium E∗
3 of system (5.18) is globally asymp-

totically stable in the domain

Ω̂ΩΩ =
{
(Ct, Cd, Cs) ∈ R3

+ : Ct ≥ 0, Cd >
3kskcat

κ
(1− C∗

t ) ,

Cs >
kcat

kcat + kres + ks

+

[
kc − kskcat

2(kcat + kres + ks)

]
kcat

κ
(1− C∗

t ) , Ct + Cd + Cs ≤ 1
}

Proof. Consider the Lyapunov function

V1(Ct, Cd, Cs) =
1

2

[
A(Cd − C∗

d)2 + B(Cs − C∗
s )2 + C(Ct − C∗

t )2

]
, (5.27)

where the constants A, B and C are to be determined. Then,

· V1 is continuously differentiable on Ω̂ΩΩ,

· V1(C
∗
t , C

∗
d , C

∗
s ) = 0, and

· V1(Ct, Cd, Cs) > 0, ∀ (Ct, Cd, Cs) ∈ Ω̂ΩΩ \ {(C∗
t , C

∗
d , C

∗
s )}

Time differentiating (5.27) along the solutions of (5.18) we get

V̇1 = A(Cd − C∗
d)Ċd + B(Cs − C∗

s )Ċs + C(Ct − C∗
t )Ċt

= A(Cd − C∗
d)(ksCs − kcCd) + B(Cs − C∗

s )
[
kcat(1− Ct − Cd − Cs)− (kres + ks)Cs

]

+ C(Ct − C∗
t )

[
kcCd − knCt − (1− Ct)kgC0Ct + (Cd + Cs)kgC0Ct

]
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= −
{[

(kcat + kres + ks)B(Cs − C∗
s ) + AksC

∗
d −Bkcat

]
Cs + BkcatC

∗
s

+ (Akc(Cd − C∗
d)−BkcatC

∗
s )Cd + (Bkcat − Aks)CdCs + (Cs − C∗

s )BkcatCt

+ C(Ct − C∗
t ) [knCt + (1− Ct)kgC0Ct − kcCd − (Cd + Cs)kgC0Ct]

}

If we now take A = 1, B = 2ks

kcat
, and C = 0, then V̇1 will be negative if the following four

inequalities hold simultaneously:

(kcat+kres+ks)B(Cs−C∗
s )+AksC

∗
d−Bkcat > 0 ⇔ Cs > C∗

s +

(
kcat − AksC∗d

B

)

kcat + kres + ks

(5.28)

Akc(Cd − C∗
d)−BkcatC

∗
s > 0 ⇔ Cd > C∗

d +
Bkcat

Akc

C∗
s , (5.29)

Bkcat − Aks > 0 ⇔ B >
Aks

kcat

, (5.30)

Cs − C∗
s > 0 ⇔ Cs > C∗

s . (5.31)

Replacing the values of C∗
d and C∗

s in inequalities (5.28 - 5.31), we obtain

Cs >
kcat

kcat + kres + ks

+

[
kc − kskcat

2(kcat + kres + ks)

]
kcat

κ
(1− C∗

t ) (5.32)

Cd >
3kskcat

κ
(1− C∗

t ) (5.33)

2ks

kcat

>
ks

kcat

(5.34)

Cs >
kckcat

κ
(1− C∗

t ) (5.35)
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Now, inequality (5.32) can be rewritten as

Cs >
kckcat

κ
(1− C∗

t ) +
kcat

(
1− C∗

d/2
)

kcat + kres + ks

,

and, since C∗
d < 1, the region defined by inequality (5.35) is contained in the region

defined by inequality (5.32). Consequently,

V̇1 < 0 ∀ (Ct, Cd, Cs) ∈ Ω̂ΩΩ \ {(C∗
t , C

∗
d , C

∗
s )}.

By Lyapunov’s stability theorem, it follows that the equilibrium solution, E∗
3 = [C∗

t , C∗
d , C∗

s ],

is globally asymptotically stable for system (5.18) on the domain Ω̂ΩΩ. This completes the

proof of Theorem 5.1.13. 2

Remarks. Note that the global stability of the equilibrium solution E∗
3 is proved in a

very restricted region of the phase space, such that for any transients around C∗
s , for

example, the function V1 fails to be a Lyapunov function. From Remark 5.1.12, we state

the following theorem.

Theorem 5.1.14. If C0 > 0, then on the set ΩΩΩ, system (5.15) admits a unique positive

equilibrium

E∗∗
3 =

(
C0C

∗
t ,

kskcatC0

κ
(1− C∗

t ) ,
kckcatC0

κ
(1− C∗

t ) ,
(kres + ks)kcC0

κ
(1− C∗

t )

)
,

where κ = kskcat + (kcat + kres + ks)kc and C∗
t is the unique positive root in the interval

(0, 1] to the equation

(kres + ks)kgkcC0C
2
t − [κkn + (kres + ks)kgkcC0 + kskckcat] Ct + kskckcat = 0.

Furthermore, E∗∗
3 is globally stable on the domain Ω̂ΩΩ.
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Mathematical analysis of model IV

We will analyze model IV for the special case when n = 1; that is, we consider the

following system:

dCt

dt
= kcCd − knCt

km + Ct

− kgCgCt (5.36a)

dCd

dt
= ksCs − kcCd (5.36b)

dCs

dt
= kcatCg − (ks + kres) Cs (5.36c)

dCg

dt
=

knCt

km + Ct

+ (kgCt − kcat)Cg + kresCs (5.36d)

Ct(0) ≥ 0, Cd(0) ≥ 0, Cs(0) ≥ 0, Cg(0) ≥ 0.

We note that

d

dt
(Ct(t) + Cd(t) + Cg(t) + Cs(t)) = 0;

that is, the total concentration in the system is a constant

Ct(t) + Cd(t) + Cg(t) + Cs(t) = C0

This constraint guarantees the boundedness of solutions of (5.36).

The origin (0, 0, 0, 0) is the trivial equilibrium solution of (5.36). The trivial equilibrium

occurs when C0 = 0; that is, when there is no tubulin in the experiment.

The Jacobian matrix of system (5.36), evaluated at the point (0, 0, 0, 0), is given by

J(0,0,0,0) = J0 =




− kn

km
kc 0 0

0 −kc ks 0

0 0 −(kres + ks) kcat

kn

km
0 kres −kcat



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The matrix J0 is singular, implying that 0 is an eigenvalue of J0 associated with the

left (row) eigenvector [1 1 1 1]. Furthermore, the digraph, D(J0), associated with J0

is strongly connected, which implies that J0 is irreducible. Consequently, 0 is a simple

eigenvalue of J0 [32]. The existence of this zero eigenvalue is due to the conservation of

mass.

Using Gershgorin theorem, we know that all the eigenvalues of J0 have nonpositive real

parts. In particular, defining

k̃ = max

{
kn

km

, kc, kres + ks, kcat

}
, (5.37)

all Gershgorin discs are contained in the disc centred at −k̃ with radius k̃.

We now need to show that [1 1 1 1] is (to a scalar) the only strictly positive eigenvector

of J0. We “shift” the matrix J0 by a multiple of the identity matrix I to make all of its

elements nonnegative. Thus, we consider the matrix J0 + k̃I, where k̃ is given by (5.37).

The new matrix J0 + k̃I inherits some spectral properties of an irreducible matrix. In

particular, J0+ k̃I is irreducible, since the irreducibility of J0 is not affected by modifying

its diagonal entries.

By Perron-Frobenius theorem,

– the spectral radius of J0 + k̃I is a positive simple eigenvalue of J0 + k̃I strictly

exceeding in modulus all other eigenvalues of J0 + k̃I;

– there exists a positive eigenvector v corresponding to the eigenvalue ρ(J0 + k̃I);

– any other nonnegative eigenvector of J0 + k̃I is a multiple of v.

Using a left eigenvector, we have

vT (J0 + k̃I) = ρ(J0 + k̃I)vT

for vT À 0 unique to a scalar multiple.

Since

[1 1 1 1](J0 + k̃I) = [1 1 1 1]J0 + k̃[1 1 1 1] = k̃[1 1 1 1],
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it follows that ρ(J0 + k̃I) = k̃ and vT = [1 1 1 1] is the eigenvector corresponding to

the spectral radius k̃ of J0 + k̃I. We note that the spectra (the sets of all eigenvalues)

σ(J0) and σ(J0 + k̃I) of J0 and J0 + k̃I, respectively, are translations of k̃, which implies

that [1 1 1 1] is the only strictly positive (left) eigenvector of J0, and is associated to the

eigenvalue 0.

Consequently, since σ(J0) and σ(J0 + k̃I) are translations of k̃, 0 is the dominant eigen-

value of J0 and is of multiplicity 1, and all other eigenvalues of J0 have negative real parts.

By the stable and centre manifold theorems (Theorems 2.3.1 and 2.3.2, respectively), we

deduce that there exists a local three-dimensional stable manifold through (0, 0, 0, 0)

and a one-dimensional local centre manifold tangent to the eigenspace associated to the

zero eigenvalue. Therefore, the origin is locally asymptotically stable.

Let us now consider the non-trivial equilibrium solution(s) of (5.36); that is, the equilib-

rium solution(s) of (5.36) when C0 > 0.

The set

ΩΩΩ4 = {(Ct, Cd, Cs, Cg) ∈ R4
+ : Ct ≥ 0; Cd ≥ 0; Cs ≥ 0; Cg ≥ 0; Ct + Cd + Cs + Cg = C0}

is positively invariant under the flow of (5.36). It thus follows that system (5.36) is

well posed with bounded solutions. We can reduce system (5.36) to a three-dimensional

system by introducing

Cg(t) = C0 − Ct(t)− Cd(t)− Cs(t)

to obtain

dCt

dt
= kcCd − knCt

km + Ct

− (C0 − Ct − Cd − Cs)kgCt (5.38a)

dCd

dt
= ksCs − kcCd (5.38b)

dCs

dt
= (C0 − Ct − Cd − Cs)kcat − (ks + kres)Cs (5.38c)

94



Next, define

C̄t =
Ct

C0

, C̄d =
Cd

C0

, C̄s =
Cs

C0

,

so that from Eqns. (5.38a-5.38c), we have

dC̄t

dt
= kcC̄d − knC̄t

km + C0C̄t

− (1− C̄t − C̄d − C̄s)kgC0C̄t

dC̄d

dt
= ksC̄s − kcC̄d

dC̄s

dt
= (1− C̄t − C̄d − C̄s)kcat − (kres + ks)C̄s

Thus by dropping the bar for notational simplicity, we have

dCt

dt
= kcCd − knCt

km + C0Ct

− (1− Ct − Cd − Cs)kgC0Ct (5.39a)

dCd

dt
= ksCs − kcCd (5.39b)

dCs

dt
= (1− Ct − Cd − Cs)kcat − (kres + ks)Cs (5.39c)

The set

Ω̃ΩΩ4 = {(Ct, Cd, Cs) ∈ R3
+ : Ct ≥ 0; Cd ≥ 0; Cs ≥ 0; Ct + Cd + Cs ≤ 1}

is positively invariant with respect to system (5.39).

Equilibria of system (5.39)

Theorem 5.1.15. If C0 > 0, then on the set Ω̃ΩΩ4, system (5.39) admits a unique positive

equilibrium

E∗
4 =

(
C∗

t ,
kskcat

κ
(1− C∗

t ),
kckcat

κ
(1− C∗

t )

)
,
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where κ = kskcat + (kcat + kres + ks)kc and C∗
t is the unique positive root in the interval

(0, 1) to the equation

(kres + ks)kgkcC
2
0C

3
t − [kskcat − (km − C0)(kres + ks)kg] kcC0C

2
t

− [(km − C0)kskckcat + (kres + ks)kgkcC0km + κkn] Ct + kskckcatkm = 0

Proof. Setting the time derivatives of system (5.39) equal to zero, we have

0 = kcCd − knCt

km + C0Ct

− (1− Ct − Cd − Cs)kgC0Ct (5.40a)

0 = ksCs − kcCd (5.40b)

0 = (1− Ct − Cd − Cs)kcat − (kres + ks)Cs (5.40c)

From Eq. (5.40b),

Cs =
kc

ks

Cd

Substituting this value in Eq. (5.40c) and solving for Cd gives

Cd =
kskcat

κ
(1− Ct) (5.41)

where κ is given by (5.21).

Therefore,

Cs =
kckcat

κ
(1− Ct) (5.42)

Replacing the values of Cd and Cs with (5.41) and (5.42), respectively, in Eq. (5.40a)

gives

kskckcat

κ
(1− Ct)− knCt

km + C0Ct

− (kres + ks)kc

κ
(1− Ct)kgC0Ct = 0

96



This gives a cubic polynomial in Ct:

EC0C
3
t − [FC0 − (km − C0)E] C2

t − [(km − C0)F + Ekm + κkn] Ct + Fkm = 0, (5.43)

where E and F are given by (5.24) and (5.25), respectively. The positive roots, C∗
t , of

Eq. (5.43) are the Ct components of the equilibrium solutions of (5.40).

We write the left hand side of Eq. (5.43) as a difference of two polynomials Φ1(Ct) −
Φ2(Ct), where

Φ1(Ct) = EC0C
3
t + Fkm

and

Φ2(Ct) = [FC0 − (km − C0)E] C2
t + [(km − C0)F + Ekm + κkn] Ct

The function Φ1(Ct) is monotonically increasing in Ct on the interval (0, 1). We consider

the following cases.

Case I: km > E+F
E

C0. In this case

- Φ2(Ct) cuts the Ct-axis at the points

Ct = 0 and C int6
t =

(km − C0)F + Ekm + κkn

(km − C0)E − FC0

> 0

- Φ2(Ct) is concave downwards, increasing on (0, Ccrit6
t ) and decreasing on (Ccrit6

t , ∞),

where

Ccrit6
t =

(km − C0)F + Ekm + κkn

2 [(km − C0)E − FC0]
> 0

– Φ2(Ct) is positive for all Ct ∈
(
0, C int6

t

)
.

In Figure 5.5a, the functions Φ1(Ct) and Φ2(Ct) are sketched. Since

0 = Φ2(0) < Φ1(0) = Fkm
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and

EC0 + Fkm = Φ1(1) < Φ2(1) = EC0 + Fkm + κkn,

a unique intersection (at Ct = C∗
t ∈ (0, 1)) of the curves defined by the functions

Φ1(Ct) and Φ2(Ct) exists.

(a) The case when km > E+F
E C0 (b) The case when C0 < km < E+F

E C0

Figure 5.5: Illustration of the functions Φ1(Ct) and Φ2(Ct) of Eq. (5.43).

Case II: C0 < km < E+F
E

C0. In this case

– Φ2(Ct) cuts the Ct-axis at the points

Ct = 0 and C int6
t =

(km − C0)F + Ekm + κkn

(km − C0)E − FC0

< 0

– Φ2(Ct) is concave upwards, decreasing on (−∞, Ccrit7
t ) and increasing on (Ccrit7

t , 1),

where

Ccrit7
t =

(km − C0)F + Ekm + κkn

2 [(km − C0)E − FC0]
< 0

– Φ2(Ct) is positive for all Ct ∈ (0, 1).

Both functions, Φ1(Ct) and Φ2(Ct), are monotonically increasing in Ct on the inter-

val (0, 1). Since

0 = Φ2(0) < Φ1(0) = Fkm
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and

EC0 + Fkm = Φ1(1) < Φ2(1) = EC0 + Fkm + κkn,

a unique intersection (at Ct = C∗
t ∈ (0, 1)) of the curves defined by the functions

Φ1(Ct) and Φ2(Ct) exists.

Combining Case I and II, we conclude that Φ1(Ct) and Φ2(Ct) have a unique intersection

point at Ct = C∗
t ∈ (0, 1). Consequently, system (5.39) has a unique equilibrium

E∗
4 =

(
C∗

t ,
kskcat

κ
(1− C∗

t ),
kckcat

κ
(1− C∗

t )

)
,

where C∗
t is the unique positive root to the cubic equation (5.43) on the interval (0, 1).

This completes the proof of Theorem 5.1.15. 2

Remark 5.1.16. With respect to system (5.36), the unique positive equilibrium is given

by

E∗∗
4 =

(
C0C

∗
t ,

kskcatC0

κ
(1− C∗

t ) ,
kckcatC0

κ
(1− C∗

t ) ,
(kres + ks)kcC0

κ
(1− C∗

t )

)
,

where κ = kskcat + (kcat + kres + ks)kc and C∗
t is the unique positive root in the interval

(0, 1) to the equation

(kres + ks)kgkcC
2
0C

3
t − [kskcat − (km − C0)(kres + ks)kg] kcC0C

2
t

− [(km − C0)kskckcat + (kres + ks)kgkcC0km + κkn] Ct + kskckcatkm = 0.

E∗∗
4 is obtained by multiplying each component in the equilibrium solution of (5.38) by

C0 and using the fact that Cg(t) = C0 − Cs(t)− Ct(t)− Cd(t).
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Stability analysis of E∗
4

Theorem 5.1.17. The unique positive equilibrium E∗
4 of system (5.39) is globally asymp-

totically stable in the domain

ΩΩΩ4 =
{
(Ct, Cd, Cs) ∈ R3

+ : Ct ≥ 0, Cd >
3kskcat

κ
(1− C∗

t ) ,

Cs >
kcat

kcat + kres + ks

+

[
kc − kskcat

2(kcat + kres + ks)

]
kcat

κ
(1− C∗

t ) , Ct + Cd + Cs ≤ 1
}

Proof. Consider the Lyapunov function

V2(Ct, Cd, Cs) =
A1

2
(Cd − C∗

d)2 + A2(Cs − C∗
s )2 +

A3

2
(Ct − C∗

t )2, (5.44)

where the constants A1, A2 and A3 are to be determined. Then,

· V2 is continuously differentiable on ΩΩΩ4,

· V2(C
∗
t , C

∗
d , C

∗
s ) = 0, and

· V2(Ct, Cd, Cs) > 0, ∀ (Ct, Cd, Cs) ∈ ΩΩΩ4 \ {(C∗
t , C

∗
d , C

∗
s )}

Time differentiating (5.44) along the solutions of (5.39) we get

V̇2 = A1(Cd − C∗
d)Ċd + 2A2(Cs − C∗

s )Ċs + A3(Ct − C∗
t )Ċt

= A1(Cd − C∗
d)(ksCs − kcCd) + 2A2(Cs − C∗

s )
[
kcat(1− Ct − Cd − Cs)− (kres + ks)Cs

]

+ A3(Ct − C∗
t )

[
kcCd − knCt

km + C0Ct

− (1− Ct − Cd − Cs)kgC0Ct

]
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= −
{[

(kcat + kres + ks)2A2(Cs − C∗
s ) + A1ksC

∗
d − 2A2kcat

]
Cs + 2A2kcatC

∗
s

+ (A1kc(Cd − C∗
d)− 2A2kcatC

∗
s )Cd + (2A2kcat − A1ks)CdCs + (Cs − C∗

s )2A2kcatCt

+ A3(Ct − C∗
t )

[ knCt

km + C0Ct

+ kgC0Ct − kcCd − (Ct + Cd + Cs)kgC0Ct

]}

If we now take A1 = 1, A2 = ks

kcat
, and A3 = 0, then V̇2 will be negative if the following

four inequalities hold simultaneously:

(kcat+kres+ks)2A2(Cs−C∗
s )+A1ksC

∗
d > 2A2kcat ⇔ Cs > C∗

s +

(
kcat − A1ksC∗d

2A2

)

kcat + kres + ks

(5.45)

A1kc(Cd − C∗
d)− 2A2kcatC

∗
s > 0 ⇔ Cd > C∗

d +
2A2kcat

A1kc

C∗
s (5.46)

2A2kcat − A1ks > 0 ⇔ A2 >
A1ks

2kcat

(5.47)

Cs − C∗
s > 0 ⇔ Cs > C∗

s (5.48)

Replacing the values of C∗
d and C∗

s in inequalities (5.45 - 5.48), we obtain

Cs >
kcat

kcat + kres + ks

+

[
kc − kskcat

2(kcat + kres + ks)

]
kcat

κ
(1− C∗

t ) (5.49)

Cd >
3kskcat

κ
(1− C∗

t ) (5.50)

ks

kcat

>
ks

2kcat

(5.51)

Cs >
kckcat

κ
(1− C∗

t ) (5.52)
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Now, inequality (5.49) can be rewritten as

Cs >
kckcat

κ
(1− C∗

t ) +
kcat

(
1− C∗

d/2
)

kcat + kres + ks

,

and, since C∗
d < 1, the region defined by inequality (5.52) is contained in the region

defined by inequality (5.49). Consequently,

V̇2 < 0 ∀ (Ct, Cd, Cs) ∈ ΩΩΩ4 \ {(C∗
t , C

∗
d , C

∗
s )}.

By Lyapunov’s stability theorem, it follows that the equilibrium solution, E∗
4 = (C∗

t , C∗
d , C∗

s ),

is globally asymptotically stable for system (5.39) on ΩΩΩ4. This completes the proof of

Theorem 5.1.17. 2

Remarks. Note that the global stability of the equilibrium solution E∗
4 is confined to a

very specific region of the phase space. For instance, for any transients around C∗
s , the

function V2 fails to be a Lyapunov function. From Remark 5.1.16, we state the following

theorem.

Theorem 5.1.18. If C0 > 0, then on the set ΩΩΩ4, system (5.36) admits a unique positive

equilibrium

E∗∗
4 =

(
C0C

∗
t ,

kskcatC0

κ
(1− C∗

t ) ,
kckcatC0

κ
(1− C∗

t ) ,
(kres + ks)kcC0

κ
(1− C∗

t )

)
,

where κ = kskcat + (kcat + kres + ks)kc and C∗
t is the unique positive root in the interval

(0, 1) to the equation

(kres + ks)kgkcC
2
0C

3
t − [kskcat − (km − C0)(kres + ks)kg] kcC0C

2
t

− [(km − C0)kskckcat + (kres + ks)kgkcC0km + κkn] Ct + kskckcatkm = 0

Furthermore, E∗∗
4 is globally stable on the domain ΩΩΩ4.
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5.2 Numerical simulations

In this section, we present numerical simulations of the models. All simulations and

subsequent analysis were conducted in MATLAB [55].

Symbol Description Value Unit Source

All models
kn Rate constant for nucleation 5.127× 10−6 s−1 [69]

kg Rate constant for elongation 9.3 µmmin−1 [8]

ks Rate constant for shrinking 12.8 µmmin−1 [8]

kc Rate constant for recycling 10 min−1 U

II & IV only
km Maximal rate of nucleation 6 U

III & IV only
kcat Catastrophe frequency 0.96 min−1 [8]

kres Rescue frequency 1.86 min−1 [8]

V only
acat Velocity of the catastrophe rate 0.5 min−1 U

ares Velocity of the rescue rate 10 min−1 U

bcat Maximal magnitude of the catastrophe rate 2 min−1 U

bres Minimal magnitude of the rescue rate 2 min−1 U

Table 5.1: Parameter values used in the numerical simulation of the models. The symbol
U indicates that the parameter was arbitrarily chosen.

Numerical simulation of model I

Table 5.1 gives the parameters of model (5.1), their description, and the numerical values

that are used for the simulations, while Figure 5.6 shows the time evolution of the variables
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Ct(t), Cd(t), and Cm(t) (in proportion) of system (5.1), for various initial conditions. In

Figure 5.6, notice that only about 34% of the solution polymerizes to form microtubules.

Figure 5.6: Solution curves for model I in proportions. Parameter values are as given in Table 5.1.

Numerical simulation of model II

Using the parameter values in Table 5.1, we carried out numerical simulation of model

(5.9). Figures 5.7 and 5.8 show the solution curves of model (5.9) for various initial

conditions, the former in the case when ks + kc < kgC0 holds, and the latter in the case

when ks + kc > kgC0 holds. Although the case ks + kc < kgC0 has not been proved

mathematically, it appears that E∗∗
2 is globally stable in both cases.
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Figure 5.7: Solution curves for model II in proportions when the condition of Theorem 5.1.9 does not
hold; that is, when ks + kc < kgC0.

Numerical simulation of model III

We carried out numerical simulation of model (5.15). Table 5.1 gives the parameters of

the model, their description, and the numerical values that are used for the simulations.

Figure 5.9 shows the time evolution of the variables Ct(t), Cd(t) and Cm = Cs(t) + Cg(t)

of system (5.15) for various initial conditions. In contrast to Models I and II, Figure 5.9

now suggests that ultimately, 66% of the solution polymerizes into microtubules.

Numerical simulation of model IV

The solution curves of the variables Ct(t), Cd(t) and Cm = Cs(t)+Cg(t) of system (5.36)

are shown in Figure 5.10. The parameters used in this simulation are given in Table 5.1.

Again notice that in Figure 5.10, the percentage of microtubules formed is about 66%.
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Figure 5.8: Solution curves for model II in proportions when the condition of Theorem 5.1.9 is satisfied;
that is, when ks + kc > kgC0.

Figure 5.9: Solution curves for model III in proportions. Parameter values are as given in Table 5.1.
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Figure 5.10: Solution curves for model IV in proportions. Parameter values are as given in Table 5.1.

Numerical simulation of model V

Figure 5.11 shows the time evolution of the variables Ct(t), Cd(t) and Cm = Cs(t)+Cg(t)

of system (4.15). Table 5.1 gives the parameters for this simulation. From Figure 5.11,

we notice that ultimately, close to 60% of the solution polymerizes into microtubules.

Comparing Figures 5.6 and 5.7 on one hand, and Figures 5.9, 5.10 and 5.11 on the other,

it seems that the introduction of dynamic instability in the system induces an increase

in the level of polymerization of microtubules.

5.3 Sensitivity analysis

To assess the effect of the parameters on the variables, we conducted sensitivity analysis.

This involved solving (and normalizing) the system of first partial derivatives of the

variables with respect to the parameter estimates as described in Section 2.6.2. Thus in
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Figure 5.11: Solution curves for model V in proportions. Parameter values are as given in Table 5.1.

Model I, for example, we solved the following system of ordinary differential equations:

Ċt = kcCd − knC
n
t − kgCmCt,

Ċd = ksCm − kcCd,

Ċm = knCn
t + kgCmCt − ksCm,

d

dt

(
∂CCC

∂ppp

)
=

∂fff

∂CCC

∂CCC

∂ppp
+

∂fff

∂ppp
,

CCC(0) = [Ct0 Cd0 Cm0]
T ,

∂CCC

∂ppp
(0) =

∂

∂ppp

(
CCC(0)

)
= 0,

where

CCC = [Ct Cd Cm]T , fff = [f1 f2 f3]
T = [Ċt Ċd Ċm]T ,

∂CCC

∂ppp
=




∂Ct

∂kn

∂Ct

∂kg

∂Ct

∂ks

∂Ct

∂kc

∂Cd

∂kn

∂Cd

∂kg

∂Cd

∂ks

∂Cd

∂kc

∂Cm

∂kn

∂Cm

∂kg

∂Cm

∂ks

∂Cm

∂kc




,
∂fff

∂CCC
=




∂f1

∂Ct

∂f1

∂Cd

∂f1

∂Cm

∂f2

∂Ct

∂f2

∂Cd

∂f2

∂Cm

∂f3

∂Ct

∂f3

∂Cd

∂f3

∂Cm




,
∂fff

∂ppp
=




∂f1

∂kn

∂f1

∂kg

∂f1

∂ks

∂f1

∂kc

∂f2

∂kn

∂f2

∂kg

∂f2

∂ks

∂f2

∂kc

∂f3

∂kn

∂f3

∂kg

∂f3

∂ks

∂f3

∂kc



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5.3.1 Transient versus long-term sensitivity analysis results

Figure 5.12 shows the solution curves of the normalized sensitivity coefficients of the

variables in model I (i.e., Ct, Cd and Cm) to the parameters (kn, kg, ks and kc). The

figure captures two aspects of the sensitivity: the transient and the long-term sensitivity.

In the long-run, the sensitivity coefficients lie within the [−1, 1] interval. This was the

general trend across the models.

Figure 5.12: The curves of normalized sensitivity coefficients of the variables Ct, Cd and
Cm in model I with respect to the parameters.

5.3.2 Qualitative sensitivity analysis results

As we would, of course, expect, in Figure 5.12, and in all the other models, the normalized

sensitivity coefficient of the microtubules with respect to the elongation parameter, ∂ ln Ct

∂ ln kg
,

is positive, meaning that an increase in the parameter kg induces an increase in the
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microtubule. The shrinking parameter, ks, has an opposite effect on the microtubule in all

the models - increasing the value of ks causes a decrease in the microtubule concentration.

The qualitative sensitivity analysis results are summarized in Table 5.2. The table shows

the signs of the normalized sensitivity coefficients for all the models. A +++ means that

an increase in the parameter will induce an increase in the variable’s population, while

a −−− means that an increase in the parameter will induce a decrease in the variable’s

population. In Table 5.2, we notice that in the absence of dynamic instability (models

I and II), shrinkage has a mixed effect on the GDP-tubulin. The recycling parameter

(kc) has a positive effect on GTP-tubulin in models I, III and IV, a positive effect on

microtubules in all the models, a mixed effect on the GTP-tubulin in model II, and a

negative effect on GTP-tubulin in model V. Nucleation has a negative effect on GTP-

tubulin in models I, II and IV, has a mixed effect on GTP-tubulin in models III and V,

and has a positive effect on GDP-tubulin in all the models. It (nucleation) has a positive

effect on microtubules in model I, II and V, and a mixed effect on microtubules in models

III and IV. It seems that in model V, the magnitude of the positive effect of nucleation

on GDP-tubulin cancels the negative effect of nucleation on GTP-tubulin, resulting in

a positive effect on microtubules. In general, it appears that the presence of dynamic

instability inhibits the positive effect of nucleation on microtubules. The maximal rate

of nucleation (km) has no effect on all the variables in models II and IV.

The contour plots resulting from the sensitivity analysis provided an insight into the

effect of simultaneously varying pairs of parameters on the GTP-tubulin, GDP-tubulin

and microtubule concentrations. When the contour curves are linear or nearly so, then

this implies that the interaction effect of the two parameters on the variable’s population

is insignificant. If, on the other hand, the contour curves have considerable curvature,

then this implies that the interaction term is large and important. A sample of the

contour plots is shown in Figures 5.13 and 5.14. The magnitudes of the sensitivity

coefficients in the sensitivity analysis are shown in Table 5.3. When the parameters kg,

ks and kc pairwise interacted, models III and IV showed low sensitivity to the nucleation
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I II III IV V
tkn −−− −−− ±±± −−− ±±±
tkg −−− −−− −−− −−− −−−
tks +++ +++ +++ +++ +++
tkc +++ ±±± +++ +++ −−−
tkm n.a. 0 n.a. 0 n.a.
tkcat n.a. n.a. +++ +++ n.a.
tkres n.a. n.a. −−− −−− n.a.
tacat n.a. n.a. n.a. n.a. −−−
tares n.a. n.a. n.a. n.a. −−−
tbcat n.a. n.a. n.a. n.a. +++
tbres n.a. n.a. n.a. n.a. −−−
dkn +++ +++ +++ +++ +++
dkg +++ +++ +++ +++ +++
dks ±±± ±±± +++ +++ +++
dkc −−− −−− −−− −−− −−−
dkm n.a. 0 n.a. 0 n.a.
dkcat n.a. n.a. +++ +++ n.a.
dkres n.a. n.a. −−− −−− n.a.
dacat n.a. n.a. n.a. n.a. −−−
dares n.a. n.a. n.a. n.a. −−−
dbcat n.a. n.a. n.a. n.a. +++
dbres n.a. n.a. n.a. n.a. −−−
mkn +++ +++ ±±± ±±± +++
mkg +++ +++ +++ +++ +++
mks −−− −−− −−− −−− −−−
mkc +++ +++ +++ +++ +++
mkm n.a. 0 n.a. 0 n.a.
mkcat n.a. n.a. +++ +++ n.a.
mkres n.a. n.a. −−− −−− n.a.
macat n.a. n.a. n.a. n.a. −−−
mares n.a. n.a. n.a. n.a. −−−
mbcat n.a. n.a. n.a. n.a. +++
mbres n.a. n.a. n.a. n.a. −−−

Table 5.2: Sensitivity analysis: influences of reaction rates on the dynamics of GTP-tubulin (t), GDP-
tubulin (d), and polymers (m). tkg, for example, denotes ∂ ln Ct

∂ ln kg
. The symbol +++ (resp. −−−) denotes positive

(resp. negative) value of normalized sensitivity coefficient, while ±±± denotes positive and negative values
of normalized sensitivity coefficients. n.a. stands for ‘not applicable’.
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Figure 5.13: A contour plot for the variability of sensitivity coefficients of microtubule concentration
derived from the sensitivity analysis of kg and kc in model I.

parameter, kn, while models I and II showed high sensitivity to kn (Table 5.3). This

seemed to suggest that dynamic instability inhibits nucleation in microtubule dynamics.

5.3.3 Quantitative sensitivity analysis results

The quantitative sensitivity analysis results were summarized using box plots. A box plot

(sometimes referred to as a box-and-whisker plot) is a graphical device that simultaneously

displays several important features of a given data set. At a glance, a box plot reveals

the centre, dispersion and skewness of a data set. It displays the following features:

· the 25th percentile (Q1),

· the 75th percentile (Q3),

· the median,
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Figure 5.14: A contour plot for the variability of sensitivity coefficients of microtubule concentration
derived from the sensitivity analysis of kg and ks in model I.

· the minimum and maximum values,

· outliers, if any.

The Q1 and Q3 are at the lower and upper ends, respectively, of the box. The distance

between Q1 and Q3 is the interquartile range (IQR). A line (whisker) extends from Q1

to the smallest value that is inside a distance of 1.5× IQR. Similarly, a whisker extends

from Q3 to the largest value that is inside a distance of 1.5 × IQR. The median is the

line inside of the box. The data is skewed if the median is not centred in the box. An

outlier is any data point that is more than 1.5× IQR from either end of the box.

The box plots in Figure 5.15c, for example, show the sensitivity of the GTP-tubulin in

model III as a function of the parameters.

From the sensitivity analysis, we noted that nucleation rate (kn) and the maximal rate

of nucleation (km) had negligible effect in the models.

Table 5.4 gives the parameter with the highest model sensitivity among all the parameters
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in each population for each model. In the absence of dynamic instability, the elongation

and shrinkage parameters account for the highest model sensitivity, while in the presence

of dynamic instability, the catastrophe parameter is inducing the highest sensitivity in the

variables. An interesting observation is the dispersion of the data. For models without

dynamic instability, the standard deviations are, in general, higher than in the presence

of dynamic instability. Intuitively, we would expect the data from dynamic instability

models to display more dispersion, given the stochastic nature of catastrophe and rescue

frequencies. Dynamic instability could thus be viewed as a smoothing process in the long

run.

I II III IV V
Ct kg

-0.0251
(0.0009)

kg

-0.0319
(0.0155)

kcat

0.0172
(0.0036)

kcat

0.0190
(0.0041)

bcat

0.0109
(0.0022)

Cd ks

-0.0214
(0.0025)

kc

-0.0184
(0.0012)

kcat

0.0578
(0.0103)

kcat

0.0566
(0.0095)

bcat

0.0337
(0.0041)

Cm ks

-0.0237
(0.0057)

ks

-0.0283
(0.0034)

kcat

-0.0720
(0.0127)

kcat

-0.0755
(0.0135)

bcat

-0.0446
(0.0062)

Table 5.4: The parameter with the highest model sensitivity. The data shown in each cell
is mean and standard deviation (in parentheses) of the normalized sensitivity coefficient
of the variable with respect to the given parameter.
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When GTP-tubulin concentration-dependence on the dynamic instability parameters

kcat and kres is assumed in model V, we observed some high sensitivity to the recycling

(kc) and elongation (kg) parameters (Table 5.3 and Figure 5.18).

From Table 5.3, we notice that in model V, any pair of parameters involving the recy-

cling parameter induces relatively high interaction effects on the sensitivity coefficients.

This implies that recycling of GDP-tubulin has a greater effect in microtubule dynamics

when rescue and catastrophe frequencies depend on GTP-tubulin concentration. This

inference is further reinforced by the box plots obtained in Model V (Figure 5.18). By

comparing models I and III in Table 5.3, we notice a substantial number of relatively

higher sensitivities in model I. A similar observation is made if we compare models II and

IV, with model II recording some high sensitivities on a number of coefficients. A related

observation is made in Figure 5.19, where the sensitivity of the variables in model I and

II is relatively higher compared to that in models III, IV and V. This seems to suggest

that dynamic instability inhibits sensitivity of the variables to the parameters.

5.4 Discussion

From the analysis of the models, two key points are identified. Firstly, our results suggest

that dynamic instability is an essential and indispensable property of microtubules. From

the solution curves of the models, we notice that the level of polymerization of micro-

tubules is higher in the presence than in the absence of dynamic instability (compare

Figures 5.6, 5.7, 5.9, 5.10 and 5.11). That is, the proportion of solution that polymerizes

to form microtubules is higher when dynamic instability is present. This seems to un-

derscore the importance of dynamic instability in the maintenance of abundant supply

of microtubules in the cells.

Secondly, our results support the long held view [24] and experimental observations

[27, 82] that dynamic instability depends on the GTP-tubulin concentration. It is believed

that the energy source that powers dynamic instability is the hydrolysis of GTP-tubulin.
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In model V, where the rescue and catastrophe parameters are assumed to depend on

the GTP-tubulin concentration, we notice that the sensitivity coefficient of recycling

parameter, kc is relatively high compared to the other models (Table 5.3). A high value

of kc, on the other hand, means an increase in microtubules (see Table 5.2).

In general, the box plots revealed a rather counterintuitive observation; in the absence

of dynamic instability, the data showed more dispersion than in the presence of dynamic

instability. Dynamic instability is an out-of-equilibrium phenomenon. As such, we would

expect the data from models with dynamic instability to display more dispersion than

those without it. It appears that in the long-run, dynamic instability is a smoothing

process for the microtubule dynamics.
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Chapter 6

Conclusions and suggestions for

future work

The overall objective of this thesis was to contribute to our understanding of the role of

dynamic instability in the assembly-disassembly dynamics of microtubules in vitro. We

have constructed and analyzed a set of mathematical models of the dynamics of micro-

tubule assembly and disassembly, considering several biologically plausible mechanisms.

Numerical simulations have confirmed our analytic results. In line with the long-held

view, numerical simulations have shown that nucleation has an insignificant effect on the

overall microtubule dynamics. In the models where dynamic instability is present, we

noted that the proportion of solution that polymerizes to form microtubules is higher

than in models where dynamic instability is absent. This suggests that dynamic insta-

bility induces the formation of microtubules from the tubulin subunits. Thus dynamic

instability provides the mechanism for the supply of microtubules in the areas where

they are needed. Numerical simulations have also supported the notion that dynamic

instability depends on GTP-tubulin concentration.

This work has generated some interesting problems for consideration in the future.

Firstly we have assumed that the microtubules nucleate at random. While this may be

true in vitro, it is a known fact from electron microscopic studies that microtubules form
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at specific regions in vivo [72]. We thus need to incorporate the spatial component in the

models. By compartmentalizing the cell, for example, we can study the dynamics of the

concentrations of GDP-tubulin, GTP-tubulin and microtubules across the cell.

Secondly, we have taken that the newly formed seeds during the nucleation phase are

growing microtubules. It would be interesting to consider the seeds as also existing in

two states; growing and shrinking state.

Lastly, experiments [27] show that the two ends of the microtubule grow at different

rates. Besides, the minus ends are embedded within the microtubule-organizing centre

(MTOC) where initiation of new microtubules occurs, while the plus ends grow into the

cytoplasm [2, 81]. This feature could thus be incorporated by introducing distinct rates

for the minus and plus end.
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