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Abstract.
This study is a critical review of theoretical issues that underline the linear mixed effects
(LME) and nonlinear mixed effects (NLME) models. These two areas are revisited under
maximum likelihood and restricted maximum likelihood estimation frameworks. We also
review methods of estimating parameters in both linear and nonlinear mixed effects models.
In the case of LME, we consider different ways of developing the likelihood estimators, key
among these methods are the “pseudo-data” approach, orthogonal triangular decomposition
method and the use of penalized least squares problem.
For NLME, we intended to investigate the computational efficiency and accuracy of com-
putational methods, like the b-splines, that could be used to approximate the log-likelihood
function in non-linear mixed effects models. This was not achieved in this study but can
be an interesting area for further research work. We critically review the four methods of
estimating parameters by Pinheiro and Bates (1995) through proving a number of lemmas.
Our proves led us to same stated results by different researchers in different papers. This is a
key issue in the investigation of other expansion methods and comparing their computational
efficiency and accuracy with these existing ones.
We conclude by giving an insight into linear mixed effects models by analyzing a data set
from livestock where we examine incorporation of random effects to study variations among
rams (sires) and ewes (dams) and their influences on lamb weaning weight. Factors like year
of birth of the lamb, sex of lamb, age at weaning, age of dam, ewe breed and ram breed are
found to influence the weaning weight differently. With the random terms (ewes and rams)
specified in the model the estimate of the residual among lamb variance is found to reduce
due to taking into account the variations among rams and ewes within breeds. It was our
intention to obtain heritability estimates which determine the proportion of the variation
among offspring that have been handed down from parents out of these random estimates.
Keywords: repeated-measures data, multilevel data, longitudinal data, LME, NLME, “pseudo-
data” and b-splines.
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Chapter 1

Introduction

1.1 Introduction

A mixed-effects model may simply be defined as a model with both fixed effects and random
effects. Mixed-effects models are primarily used to describe relationship between a response
variable and some covariates in data that are grouped according to one or more classification
factors. Examples of such grouped data include longitudinal data, repeated-measures data,
multilevel data and block designs.
The increasing popularity of mixed-effects models is explained by the flexibility they offer
in modeling the within-group correlation often present in grouped data, by the handling of
balanced and unbalanced data in a unified framework, and by the availability of reliable and
efficient softwares (for example R) for fitting them.
These mixed-effects models may be divided into linear mixed-effects models and nonlinear
mixed-effects models.
Linear mixed-effects models (MLE) are mixed-effects models in which both the fixed and
the random effects occur linearly in the model function. They extend linear models by
incorporating random effects which can be regarded as additional error terms, to account
for correlation among observations within the same group.
Nonlinear mixed-effects models (NLME) are mixed-effects models in which some, or all, of
the fixed and random effects occur nonlinearly in the model function.
Several approximation methods to the log-likelihood in the nonlinear mixed-effects model
have been proposed and described by different researchers. Such methods include linear
mixed-effects approximation method, a modified Laplacian approximation, importance sam-
pling and Gaussian quadrature.
Linear mixed-effects (LME) approximation is an estimation algorithm which alternates be-
tween two steps, a penalized nonlinear least squares(PNLS) step, and a linear mixed-effects
(LME) step.
Laplacian approximations are used frequently in Bayesian inference to estimate marginal
posterior densities and predictive distributions can also be used for approximating the like-
lihood function in NLME models.
Importance sampling has been applied to the problem of belief inference in Bayesian networks
(BNs) and action selection in influence diagrams (IDs). In its simpler form, the importance-
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sampling distribution used is the “prior” distribution of the BN resulting from setting the
value of the evidence. It provides estimates with larger variance than necessary hence far
from optimal.
Adaptive Gaussian quadrature rules are used to approximate integrals of functions with
respect to a given kernel by a weighted average of the integrand evaluated at predetermined
abscissas.

1.2 Literature Review

Nonlinear mixed-effects models offer very high flexibility in handling the unbalanced repeated-
measures data arising in different areas of investigation such as pharmacokinetics and eco-
nomics. According to Pinheiro and Bates(1995), such repeated-measures data are generated
by observing a number of subjects repeatedly under varying conditions. In longitudinal
studies, observations on the same subject are made at different times.
Mixed-effects models assume that the form of the intra subject model that relates the re-
sponse variable to time is common to all subjects, but some of the parameters that define
the model may vary with subject. Nonlinear mixed-effects models are mixed-effects models
in which the intra subject model relating the response variable to time is nonlinear in the
parameters.
Pinheiro and Bates (1995) considered a nonlinear mixed-effects model which could be viewed
as a hierarchical model that in some ways generalizes both the linear-mixed effects of Laird
and Ware (1982) and the usual nonlinear model for independent data of Bates and Watts
(1988).
Laird and Ware (1982) defined a family of models for serial measurements that included
both growth models and repeated-measures models as special cases.
For measured, multivariate normal data, they proposed the following model in two stages:

- Stage 1
For each individual unit, i,

yi = xiαi + zibi + ei (1.1)

where ei is distributed as N(0, Ri) and assumed independent, Ri is an ni × ni positive
definite covariance matrix and depends on i through its dimension ni, but the set of
unknown parameters in Ri will not depend upon i. α and bi are considered fixed at
this stage.

Again α denote a p× 1 vector of unknown population parameters, xi a known ni × p
design matrix linking α to yi. bi denote a k × 1 vector of unknown individual effects,
zi a known ni × k design matrix linking bi to yi.

- Stage 2
The bi are distributed as N(0, D), independent of each other and of the ei.

Here D is a k × k positive-definite covariance matrix. The population parameters, α,
are treated as fixed effects.
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Out of their formulation, marginally, the yi are independent normals with mean xiα
and covariance matrix

Ri + ZiDZ
T
i .

When Ri = σ2I, where I denotes an identity matrix, they got a simplified model
called the “conditional-independence model”. This implied that the ni responses on
individual i were independent, conditional on bi and α.

Pinheiro and Bates (1995) considered a slightly modified version of the model proposed in
Lindstrom and Bates (1990) which define the jth observation on the ith individual as

yij = f(φi,xij) + eij, i = 1, · · · ,M ; j = 1, · · · , ni (1.2)

where yij is the jth response on the ith individual, xij is the predictor vector for the jth

response on the ith individual, f is a nonlinear function of the predictor vector and a parameter
vector φi of length r and eij is a normally distributed noise term.
According to Lindstrom and Bates (1990), the predictor variables xij are not restricted.
The parameter vector could vary from individual to individual, thus the subject-specific
parameter vector was modeled as

φij = Aijβ +Bijbi, bi ∼ N(0, σ2D), (1.3)

where β is a p-dimensional vector of fixed population parameters, bi is a q-dimensional
random effects vector associated with individual i. Aij and Bij are design matrices of size
r × p and r × q for the fixed and random effects respectively. σ2D is a (general) variance-
covariance matrix.
They also assumed that observations made on different subjects are independent and that
eij are iid N(0, σ2) and independent of bi.
Though different methods can be used to estimate the parameters in model (1.2), Davidian
et al (1991), Ramos et al (in press)), Pinheiro and Bates (1995) restricted themselves to
maximum likelihood (ML) and restricted maximum likelihood (REML) estimation methods.
Pinheiro and Bates (1995) based their maximum likelihood estimate in (1.2) on the marginal
density of y

f(y|β,D, σ2) =

∫
f(y|b, β,D, σ2) f(b) db (1.4)

where f(y|β,D, σ2) is the marginal density of y , f(y|b, β,D, σ2) is the conditional density
of y given the random effects b and f(b) is the marginal distribution of b.
Generally, the integral above does not have a closed-form expression when the model function
f is nonlinear in bi, so different approximations have been proposed for estimating it.
Some of these methods consist of:

• taking a first-order Taylor expansion of the model function f around the expected
value of the random effects. Such an approach was used by Sheiner and Beal (1980)
and Vonesh and Carter (1992).

• taking a first-order Taylor expansion of the model function f around the conditional
(or D) modes of the random effects, as given in Lindstrom and Bates (1990).
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• the use of Gaussian quadrature rules, as applied in Davidian and Gallant (1992).

Pinheiro and Bates (1995) considered four different approximations to the log-likelihood in
the nonlinear mixed-effects model (1.2), namely:

(i) Lindstrom and Bate’s (1990) linear mixed-effects (LME) method;

(ii) a modified Laplacian approximation (Tierney and Kadane (1986));

(iii) important sampling (Geweke (1989)) and

(iv) Gaussian quadrature (Davidian and Gallant (1992)).

They compared them based on their computational and statistical properties, using both
real data examples and simulation results.
In the description of the four different approximations to the log-likelihood in the nonlinear
mixed-effects model (1.2),they showed that there exists a close relationship between the
Laplacian approximation, importance sampling and a Gaussian quadrature rule centered
around the conditional modes of the random effects b.
Their first approximation considered (LME approximation) was from an algorithm proposed
by Lindstrom and Bates (1990) for estimating the parameters in model (1.2). Their algo-
rithm proceeded in two alternating steps, a penalized nonlinear least squares (PNLS) step
and a linear mixed-effects (LME) step until some convergence criterion is met. Such alter-
nating algorithms tend to be more efficient when the estimates of the variance-covariance
components (D and σ2) are not highly correlated with the estimates of the fixed effects β.
In the linear mixed-effects model, the maximum likelihood estimates of D and σ2 are as-
ymptotically independent of the maximum likelihood estimates of β as was demonstrated
by Pinheiro (1994). Same results have not yet been extended to the nonlinear mixed-effects
model (1.2).
To carry out Laplacian approximation, the integral they wanted to estimate for the marginal
distribution of yi in model (1.2) was

f(yi|β,D, σ2) =

(
1

2πσ2

)(ni+q)/2

| D |−1/2 exp
[−g(β,D, yi, bi)/2σ

2
]
dbi (1.5)

where

g(β,D, yi, bi) = ‖yi − fi(β, bi)‖2 + bTi D
−1bi (1.6)

This integrand was expanded only around b̂.
Wolfinger (1993) had expanded the same integrand around both β̂ and b̂, by assuming a flat
prior for β.
Pinheiro and Bates (1995), noted that, there did not seem to be a straightforward gener-
alization of the concept of REML to nonlinear mixed-effects models. The difficulty is that
REML depends heavily upon the linearity of the fixed effects in the model function, which
does not occur in nonlinear models.
Lindstrom and Bates (1990) circumvented that problem by using an approximation to the
model function f in which the fixed effects β occur linearly.
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This could not be done for the Laplacian approximation, unless they considered yet another
Taylor expansion of the model function that would lead then back to something very similar
to Lindstrom and Bate’s approach.
Though they got exact results with importance sampling approximation, they could not in
general obtain a closed-form expression for the maximum likelihood estimate 0f σ2 for fixed
β and D. Thus profiling on σ2 was no longer reasonable. For such exact results, the model
function was linear in b.
The adaptive Gaussian quadrature approximation very closely resembled that obtained for
importance sampling. It gave the exact log-likelihood when the model function was linear
in b, but not true in general for the Gaussian quadrature approximation.
Like the importance sampling approximation, the Gaussian quadrature approximation could
not be profiled on σ2 to reduce the dimensionality of the optimization problem.
It is worth noting that according to Pinheiro and Bates (1995) LME approximation to the
log-likelihood function in NLME models gave accurate and reliable estimation results. Its
main advantage are its computational efficiency and the availability of a REML version of
it.
With regard to REML estimation, Pinheiro and Bates (1995) found that the results from
their data suggested that the bias correction ability of the method depended on the nonlinear
model that was being considered.

1.2.1 Statement of the problem

Several numerical approaches to approximating the log-likelihood function in non-linear
mixed effects models have been proposed in the literature. Amongst them are methods
like the LME approximation method, that has great computational efficient and availability
of a REML version yet having bias correction depended on the non-linear method being
considered, the Gaussian quadrature approximation, that gave the exact log-likelihood when
the model function was linear in b, but not true in general for the Gaussian quadrature
approximation, and the importance sampling method, that gave exact results but could not
in general give a closed-form expression for the maximum likelihood estimate 0f σ2 for fixed
β and D.
There is need to investigate the computational efficiency and accuracy of these and other com-
putational methods, like the b-splines, that could be used to approximate the log-likelihood
function in non-linear mixed effects models. There is need also to investigate the possibil-
ity of developing REML versions for approximation methods. Very importantly, one needs
to understand these already existing computational and numeric methods to competently
investigate other computational methods.
There are numerous case studies that have been developed using other softwares, like SAS
and GENSTAT, to illustrate the use of these softwares in analysis linear and non-linear
mixed effects models. There exists to the best of our knowledge no such works with the R
software, a free-ware down loadable on the Internet.
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1.3 Objectives

1.3.1 Broad objectives

In our research,we would like to

1. Review computational and numeric methods of approximating the likelihood in non-
linear mixed effects models.

2. Give a case study using R on a data set from livestock with linear mixed-effects.

1.3.2 Specific objectives

1. Review the theory on linear mixed-effects models.

2. Review the theory on nonlinear mixed-effects models.

3. Review the Laplacian approximations, importance sampling and Gaussian quadra-
tures in approximating the log-likelihood and investigate possibilities of using other
expansion methods to approximate the log-likelihood (e.g b-splines and cubic-splines)
and possibilities of defining a REML estimation for these approximations/estimation
methods.

1.4 Methodology

We have already found that taking a first-order Taylor expansion of the model function
f around the expected value of the random effects, and around the conditional modes of
the random effects and use of Gaussian quadrature rules were the three methods used in the
approximation to the log-likelihood in the nonlinear mixed-effects (NLME) model (1.2). The
different approximations to the log-likelihood in the NLME models are linear mixed-effects
(LME) method, a modified Laplacian approximation, importance sampling and Gaussian
quadrature.
In our research we would attempt various expansion methods like Taylor expansion, b-splines
and cubic-splines to approximate the function f. As much as possible we would carry out
these expansion methods on linear mixed-effects (LME) approximation. Out of our data sets
we would approximate both the first-order compartment model and the logistic model using
Taylor expansion, b-splines and cubic-splines methods. We would also simulate results for
the variance-covariance components and for the fixed effects in both logistic model and the
first-order compartment model.

1.5 Expected output

At the end of our work we expect to review the theory on linear mixed-effects models and
nonlinear mixed-effects models. It is our expectation that we would be able to review linear
mixed effects approximation method, Laplacian approximations, importance sampling and
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Gaussian quadratures in approximating the log-likelihood. Before the end of our study we
would wish to compare Taylor expansion, b-splines and cubic-splines as expansion methods
in linear mixed-effect (LME) approximation to the log-likelihood in nonlinear mixed-effects
model . We would give a well-detailed example in linear mixed effects models using R on a
data-set from livestock to illustrate these expansion methods.
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Chapter 2

Critical Review of literature

Several different nonlinear mixed-effects (NLME) models have been proposed in recent years
(Sheiner and Beal (1980); Mallet, Mentre, Steimer and Lokiek (1988); Lindstrom and Bates
(1990); Davidian and Gallant (1992); Vonesh and Carter (1992); Wakefield, Smith, Racine-
Poon and Gelfand in press; and Pinheiro and Bates (1995))
Our aim is to review nonlinear mixed-effects model by Pinheiro and Bates (1995) which
is slightly a modified version of the model proposed in Lindstrom and Bates (1990). This
model can be viewed as a hierarchical model that in some ways generalizes both the linear
mixed-effects model of Laird and Ware (1982) and the usual nonlinear model for independent
data (Bates and Watts (1988)).
Different methods can be used to estimate the parameters in NLME model. We will restrict
ourselves to considering maximum likelihood and restricted maximum likelihood estimation
In this chapter, we do a critical review on the theory on LME and NLME models.

2.1 Review of Linear Mixed Effects (LME) Models

2.1.1 Likelihood Estimation for LME Models

Consider the model

yi = Xiβ + Zibi + εi, i = 1, . . . ,M (2.1)

where β is a p-dimensional vector of fixed effects, bi ∼ N(0, ψ) and is a q-dimensional vector
of random effects, εi ∼ N(0, σ2I) and is ni-dimensional within-group error vector with a
spherical Gaussian distribution, Xi is a known fixed effects regressor (ni × p) matrix and Zi

is a known random effects regressor (ni × q) matrix.
(2.1) is a Mixed Effect Model with a single level of random effects. The parameters of the
model are β, σ2, and ∆, the relative precision factor.
We use θ to represent an unconstrained set of parameters that determine ∆. The likelihood
function of the model (2.1) is the probability density for the data given the parameters, but
regarded as a function of the parameters with the data fixed, instead of as a function of the
data with the parameters fixed. That is,
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L(β, θ, σ2|y) = f(y|β, θ, σ2), (2.2)

where L is the likelihood, f is a probability density, and y is the entire N-dimensional
response vector,N =

∑M
i=1 ni.

In the subsequent sections we will make the following assumptions:

1. bi ∼ N(0, ψ) and that ψ is a symmetric and positive definite matrix.

2. the matrix ψ can be expressed in the form of a relative precision factor, ∆, which
satisfies (

ψ−1

1/σ2

)
= ∆T ∆ (2.3)

3. ∆ factors precision matrix, ψ−1, of the random effects relative to the precision 1/σ2,
of the εi.

It follows therefore that (
ψ−1

1/σ2

)
= ∆T ∆ ⇒ ψ−1 =

(
∆T ∆

σ2

)
(2.4)

Lemma 1. The likelihood function of the sample data is given as

L(β, θ, σ2|y) =
1

(2πσ2)
N
2

. exp{−ΣM
i=1

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2

/2σ2}
M∏
i=1

abs|∆|√
|Z̄T

i Z̄i|

Proof. Because the non-observable random effects bi, i = 1, . . . ,M are part of the model, we

must integrate the conditional density of the data given the random effects with respect to

the marginal density of the random effects to obtain the marginal density for the data. We

can use the independence of the bi and the εi to express this as

f(yi|biβ, σ2) =

(
1

2πσ2

)ni
2

exp

{
−‖(yi −Xiβ − Zibi)‖2

2σ2

}
(2.5)

L(β, θ, σ2|y) = f(y|β, θ, σ2)

= f((y1, y2, . . . , yM)′|β, θ, σ2)
(2.6)

and by independence of the yi’s we have

L(β, θ, σ2|y) = f(y1|β, θ, σ2)f(y2|β, θ, σ2) . . . f(yM |β, θ, σ2)

=
M∏
i=1

f(yi|β, θ, σ2)
(2.7)
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Thus,

L(β, θ, σ2|y) =

M∏
i=1

f(yi|β, θ, σ2), (2.8)

By applying the Bayesian Theorem, we have

f(yi|β, θ, σ2) =
f(yiβ, θ, σ

2)

f(β, θ, σ2)
(2.9)

we get

M∏
i=1

f(yi|β, θ, σ2) =
M∏
i=1

f(yi, β, θ, σ
2)

f(β, θ, σ2)
,

=

M∏
i=1

∫
f(yi, bi, β, θ, σ

2)

f(β, θ, σ2)
dbi,

=

M∏
i=1

∫
f(yi|bi, β, θ, σ2).f(biβ, θ, σ

2)

f(β, θ, σ2)
dbi.

(2.10)

The likelihood function then becomes

M∏
i=1

f(yi|β, θ, σ2) =

M∏
i=1

∫
f(yi|biβ, θ, σ2).f(biβ, θ, σ

2)

f(β, θ, σ2)
dbi, (2.11)

which leads to

L(β, θ, σ2|y) =
M∏
i=1

∫
f(yi|biβ, θ, σ2).f(bi|β, θ, σ2)dbi, (2.12)

giving

L(β, θ, σ2|y) =
M∏
i=1

∫
f(yi|biβ, σ2).f(bi|θ, σ2)dbi, (2.13)

since E(yi|biβ, σ2) = Xiβ + Zibi and var(yi|biβ, σ2) = σ2I.

Then

f(yi|biβ, σ2) =

(
1

2πσ2

)ni/2

exp−1

2

[
(yi −Xiβ − Zibi)

T (σ2I)−1(yi −Xiβ − Zibi)
]
, (2.14)

which simplifies to

f(yi|biβ, σ2) =

(
1

2πσ2

)ni
2

exp− 1

2σ2
(yi −Xiβ − Zibi)

T (yi −Xiβ − Zibi),

=

(
1

2πσ2

)ni
2

exp−
[
(yi −Xiβ − Zibi)

T (yi −Xiβ − Zibi)
]

2σ2
.

(2.15)
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Again, since bi ∼ N(0, ψ) its distribution becomes

f(bi|θ, σ2) =
1

(2π)q/2|ψ|1/2
exp

{
−(bi − 0)T (ψ)−1(bi − 0)

2

}
,

=
1

(2π)q/2|ψ|1/2
exp

{
−(bTi (ψ)−1bi)

2

} (2.16)

(2.4) implies that

bTi ψ
−1bi =

(
bTi ∆T ∆bi

σ2

)

=

(
(∆bi)

T (∆bi)

σ2

)

=

(
‖∆bi‖2

σ2

) (2.17)

Hence the equation now becomes,

f(bi|θ, σ2) =
1

(2π)q/2|ψ|1/2
exp

(
−‖∆bi‖2

2σ2

)
(2.18)

Again we have

|ψ| = |
(

∆T ∆

σ2

)−1

|
= σ2q|(∆T ∆)−1|
⇒ |ψ|1/2 = σqabs|∆|−1

Thus our equation becomes

f(bi|θ, σ2) =
1

(2πσ2)q/2abs|∆|−1
exp

(
−‖∆bi‖2

2σ2

)
(2.19)

Substituting (2.5) and (2.19) into (2.13) we get the likelihood as

L(β, θ, σ2|y) =
M∏
i=1

∫
f(yi|biβ, σ2).f(bi|θ, σ2)dbi

=
M∏
i=1

∫ (
1

2πσ2

)ni
2

exp

{
−‖(yi −Xiβ − Zibi)‖2

2σ2

}
.

1

(2πσ2)q/2abs|∆|−1
exp

(
−‖∆bi‖2

2σ2

)
dbi

Which can now be written as

L(β, θ, σ2|y) =
M∏
i=1

abs|∆|
(2πσ2)

ni
2

∫ {
exp−[‖(yi −Xiβ − Zibi)‖2 + ‖∆bi‖2]/2σ2

(2πσ2)q/2

}
dbi (2.20)
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Part of the exponent in the above equation can be written as

‖(yi −Xiβ − Zibi)‖2 + ‖∆bi‖2 = (yi −Xiβ − Zibi)
T (yi −Xiβ − Zibi) + (−∆bi)

T (−∆bi)

= (yi −Xiβ − Zibi)
T (yi −Xiβ − Zibi)

+ (yi0 −Xi0 − ∆bi)
T (yi0 −Xi0 − ∆bi)

= (ȳi − X̄iβ − Z̄ibi)
T (ȳi − X̄iβ − Z̄ibi)

=
∥∥ȳi − X̄iβ − Z̄ibi

∥∥2

where

X̄i =

⎡
⎣ Xi

0

⎤
⎦ , ȳi =

⎡
⎣ yi

0

⎤
⎦ , Z̄i =

⎡
⎣ Zi

∆

⎤
⎦ (2.21)

In this case the contribution of the marginal distributions of the random effects is changed

into extra rows for the response and the design matrices. This is known as a pseudo-data

approach due to the addition of “pseudo” observations. Thus equation (2.20) becomes

L(β, θ, σ2|y) =
M∏
i=1

abs|∆|
(2πσ2)

ni
2

×
∫ {

exp−[
∥∥ȳi − X̄iβ − Z̄ibi

∥∥2]/2σ2

(2πσ2)q/2

}
dbi

(2.22)

In this integral, the exponent is in the form of a squared norm or a residual sum of squares.

To determine the conditional modes bi given the data we minimize this residual sum of

squares,

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2

= (ȳi − X̄iβ − Z̄ibi)
T (ȳi − X̄iβ − Z̄ibi)

We minimize by differentiating the above equation with respect to bi and equalizing the

resultant by zero. Thus we have

∂

∂bi
[(ȳi − X̄iβ − Z̄ibi)

T (ȳi − X̄iβ − Z̄ibi)] = 0

This implies that

−2Z̄T
i (ȳi − X̄iβ − Z̄ibi) = 0 ⇒ Z̄T

i (ȳi − X̄iβ − Z̄ibi) = 0,

which in turn also implies that

Z̄T
i Z̄ibi = Z̄T

i ȳi − Z̄T
i X̄iβ ⇒ Z̄T

i Z̄ibi = Z̄T
i (ȳi − X̄iβ)

12



and so

b̂i = (Z̄T
i Z̄i)

−1Z̄T
i (ȳi − X̄iβ)

The squared norm can then be expressed as

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2 =

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2 +
∥∥∥Z̄i(bi − b̂i)

∥∥∥2
=
∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2 + (bi − b̂i)
T Z̄T

i Z̄i(bi − b̂i)
(2.23)

Substituting (2.23) into (2.22) we get

L(β, θ, σ2|y) =

M∏
i=1

abs|∆|
(2πσ2)

ni
2

∫ ⎧⎪⎨
⎪⎩

exp−[
∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2

+ (bi − b̂i)
T Z̄T

i Z̄i(bi − b̂i)]/2σ
2

(2πσ2)q/2

⎫⎪⎬
⎪⎭ dbi

(2.24)

The first part in (2.23) does not depend on bi and thus its exponential can be factored out

of (2.24) to get

L(β, θ, σ2|y) =
M∏
i=1

abs|∆|
(2πσ2)

ni
2

exp−

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2
2σ2

∫ {
exp−[(bi − b̂i)T Z̄T

i Z̄i(bi − b̂i)]/2σ2

(2πσ2)q/2

}
dbi

=
M∏
i=1

abs|∆|
(2πσ2)

ni
2

exp−

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2
2σ2

∫
(
√

|Z̄T
i Z̄i|)−1

(
√
|Z̄T

i Z̄i|)−1(2πσ2)q/2
exp

{
−(bi − b̂i)T Z̄T

i Z̄i(bi − b̂i)
2σ2

}
dbi

=
M∏
i=1

abs|∆|
(2πσ2)

ni
2

exp−

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2
2σ2

.(
√
|Z̄T

i Z̄i|)−1

×
∫

1
(2πσ2)q/2(

√
|Z̄T

i Z̄i|)−1
exp

{
−(bi − b̂i)T Z̄T

i Z̄i(bi − b̂i)
2σ2

}
dbi

(2.25)

The integral part in the above equation is multivariate normal with mean 0 and variance 1.

Hence the equation above becomes

L(β, θ, σ2|y) =
M∏
i=1

abs|∆|
(2πσ2)

ni
2

exp−
∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2

/2σ2√
|Z̄T

i Z̄i|

=
1

(2πσ2)
N
2

. exp{−ΣM
i=1

∥∥∥ȳi − X̄iβ − Z̄ib̂i

∥∥∥2 /2σ2}
M∏
i=1

abs|∆|√
|Z̄T

i Z̄i|

(2.26)

This equation could be used directly in an optimization routine to calculate the maximum
likelihood estimates for β, θ and σ2. The optimization is much simpler if we first concentrate
or profile the likelihood so it is a function of θ only. This means calculating the conditional
estimates β̂(θ) and σ̂(θ) as the values that maximize L(β, θ, σ2) for a given θ.
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2.1.2 Evaluating the Likelihood Through Decomposition

From our augmented model matrices (2.21) and out of the linear mixed-effects model, the
orthogonal triangular decomposition of the augmented model matrix Z̄i is

Z̄i = Qi

[
R11(i)

0

]
(2.27)

where Q(i) is (ni + q) × (ni + q) and R11 is q × q.

Lemma 2. The likelihood function of the model (2.1) in orthogonal triangular decomposition

is given as

L(β, θ, σ2|y) = (2πσ2)−N/2 exp

{
‖c−1‖2 + ‖c0 −R00β‖2

−2σ2

}
M∏
i=1

abs

{ |∆|
|R11(i)|

}
,

where c is as defined in the Appendix A.5 and c−1, c0, R00 and R11(i) are as applied in the

following definitions:

1. R10(i) is a q × p matrix and R00(i) is a ni × p matrix, defined as⎡
⎣ R10(i)

Roo(i)

⎤
⎦ = QT

(i)X̄i (2.28)

and the q-vector c1(i) and the ni-vector c0(i) may be defined as⎡
⎣ c1(i)

co(i)

⎤
⎦ = QT

(i)ȳi (2.29)

2. or we may think of these matrices as components in an orthogonal triangular decom-

position of the augmented matrix⎡
⎣ Zi Xi yi

∆ 0 0

⎤
⎦ = Q(i)

⎡
⎣ R11(i) R10(i) c1(i)

0 R00(i) c0(i)

⎤
⎦ (2.30)

in which case reduction to triangular form is stopped after the first q columns,

3. and ⎡
⎢⎢⎢⎣

R00(i) c0(i)
...

...

R00(M) c0(M)

⎤
⎥⎥⎥⎦ = Q0

⎡
⎣ R00 c0

0 c−1

⎤
⎦ (2.31)
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which is a peculiar numbering scheme for the sub matrices and sub vectors designed

to allow easy extension to more than one level of random effects.

Proof. From Appendix A.4, we have

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2 =

∥∥QT
(i)(ȳi − X̄iβ − Z̄ibi)

∥∥2
=
∥∥QT

(i)ȳi −QT
(i)X̄iβ −QT

(i)Z̄ibi
∥∥2

=

∥∥∥∥∥∥c(i) −QT
(i)Q(i)

⎡
⎣ R(i)

0

⎤
⎦ β −QT

(i)Q(i)

⎡
⎣ R11(i)

0

⎤
⎦ bi
∥∥∥∥∥∥

2

=

∥∥∥∥∥∥c(i) −
⎡
⎣ R(i)

0

⎤
⎦ β −

⎡
⎣ R11(i)

0

⎤
⎦ bi
∥∥∥∥∥∥

2

=
∥∥c1(i) − R10(i)β −R11(i)bi

∥∥2 +
∥∥c0(i) − R00(i)β

∥∥2

(2.32)

The integral in (2.22),

I =

∫ {
exp−[

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2]/2σ2

(2πσ2)q/2

}
dbi (2.33)

now becomes

I =
∫ {

exp−[
∥∥c1(i) − R10(i)β − R11(i)bi

∥∥2 +
∥∥c0(i) − R00(i)β

∥∥2]/2σ2

(2πσ2)q/2

}
dbi

= exp

{∥∥c0(i) − R00(i)β
∥∥2

−2σ2

}∫ {exp ‖c1(i)−R10(i)β−R11(i)bi‖2

−2σ2

}
(2πσ2)q/2

dbi

(2.34)

where R11(i) is nonsingular. Performing a change of variable,

φi = (c1(i) − R10(i)β − R11(i)bi)/σ ⇒ dφi = −σ−qR11(i)dbi = σ−qabs|R11(i)|dbi

This implies that

dφi = σ−qabs|R11(i)|dbi ⇒ dbi =

{
dφi

σ−qabs|R11(i)|
}

=

{
σqdbi

abs|R11(i)|
}

(2.35)

This implies that the last integral in (2.34) now becomes

∫ {exp
‖c1(i)−R10(i)β−R11(i)bi‖2

−2σ2

}
(2πσ2)q/2

dbi =
1

abs|R11(i)|

∫
exp(−‖φ‖2 /2)

(2π)q/2
dφi

=
1

abs|R11(i)|

(2.36)
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It is important to note that the result in (2.36) is the same as the denominator in the product

of (2.26), that is,

√
|Z̄T

i Z̄i| =

√√√√√|[RT
11(i)0]QT

(i)Q(i)

⎡
⎣ R11(i)

0

⎤
⎦ |

=
√

|RT
11(i)R11(i)|

=
√

|RT
11(i)||R11(i)|

=
√

(|RT
11(i)|)2

= abs|R11(i)|

(2.37)

R11(i) is a triangular matrix whose determinant is simply the product of its diagonal elements.

Substituting (2.36) and (2.34) into (2.20) we get

L(β, θ, σ2|y) =
exp(−∑M

i=1

∥∥c0(i) −R00(i)β
∥∥2 /2σ2)

(2πσ2)N/2

M∏
i=1

abs

{ |∆|
|R11(i)|

}
(2.38)

It is worth noting that the term in the exponent has the form of a residual sum of squares

for β pooled over all the groups. From (2.31), we have

L(β, θ, σ2|y) = (2πσ2)−N/2 exp

{
‖c−1‖2 + ‖c0 −R00β‖2

−2σ2

}
M∏
i=1

abs

{ |∆|
|R11(i)|

}
(2.39)

since

∥∥c0(i) −R00(i)β
∥∥2 =

∥∥QT
0 (c0(i) −R00(i)β)

∥∥2
=
∥∥QT

0 c0(i) −QT
0R00(i)β

∥∥2
=

∥∥∥∥∥∥QT
0Q0

⎡
⎣ c0

c−1

⎤
⎦−QT

0Q0

⎡
⎣ R00

0

⎤
⎦ β
∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
⎡
⎣ c0

c−1

⎤
⎦−
⎡
⎣ R00

0

⎤
⎦ β
∥∥∥∥∥∥

2

= ‖c0 − R00β‖2 + ‖c−1‖2

(2.40)
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For a given θ, values of β and σ2 that maximize (2.39) are

∂L(β, θ, σ2|y)

∂β
= 0

⇒ −2R00(c0 − R00β)

−2σ2
= 0

⇒ R00co −R2
00β = 0

⇒ β̂(θ) = R−1
00 c0

and by writing (2.39) as a log-likelihood, that is,

logL(β, θ, σ2|y) = (−N
2

)log(2π) + (−N
2

)log(σ2) − 1

2σ2
(‖c−1‖2 + ‖c0 −R00β‖2)

then we have,

∂logL(β, θ, σ2|y)

∂σ2
= 0

⇒ −N
2σ2

+
‖c−1‖2 + ‖c0 −R00β‖2

2σ4
= 0

⇒ σ̂2(θ) =
‖c−1‖2 +

∥∥∥c0 − R00β̂
∥∥∥2

N

but

β̂(θ) = R−1
00 c0 (2.41)

which implies that

σ̂2(θ) =
‖c−1‖2

N
+

∥∥c0 −R00R
−1
00 c0
∥∥2

N

=
‖c−1‖2

N

(2.42)

which leads to the likelihood function as

L(θ|y) = L(β̂(θ), θ, σ̂2(θ)|y)

=
1

(2πσ̂2(θ))N/2
exp

⎧⎪⎨
⎪⎩
‖c−1‖2 +

∥∥∥c0 − R00β̂(θ)
∥∥∥2

−2σ̂2(θ)

⎫⎪⎬
⎪⎭

M∏
i=1

abs

{ |∆|
|R11(i)|

}

=

{
N

2π ‖c−1‖2

}N/2

exp

{
−N

2

} M∏
i=1

abs

{ |∆|
|R11(i)|

}
(2.43)
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or the profiled log-likelihood function as

l(θ|y) = logL(θ|y)

=
N

2
log(N) − N

2
log(2π) − N

2
log(‖c−1‖2) − N

2
+

M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

=
N

2
[log(N) − log(2π) − 1] −Nlog ‖c−1‖ +

M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

} (2.44)

This profiled log-likelihood is maximized with respect to θ, producing the maximum like-
lihood estimator θ̂. The maximum likelihood estimators θ̂ and σ̂2 are obtained by setting
θ = θ̂ in (2.41) and in (2.42).
Technically the random effects bi are not parameters for the statistical model although
they do behave in some way s like parameters .
The conditional modes of the random effects, evaluated at the conditional estimate of β, are
the Best Linear Unbiased Predictors or BLUPs of the bi, i=1,· · · ,M.
These conditional modes can be evaluated using the matrices from the orthogonal triangular
decomposition.
From the exponent value in (2.34), which is the residual sum-of-squares, we can determine
the conditional modes of the random effects at the conditional estimate of β, by minimizing
these residual sum-of-squares, that is,

∂

∂bi

∥∥c1(i) − R10(i)β − R11(i)bi
∥∥2

= 0

⇒ −2R11(i)(c1(i) −R10(i)β − R11(i)bi) = 0

⇒ b̂i(θ) = R−1
11(i)(c1(i) − R10(i)β̂(θ))

(2.45)

Partially, the unknown vector θ is replaced by its maximum likelihood estimator θ̂, producing
estimated BLUPs b̂i(θ̂)

2.1.3 Restricted Likelihood Estimation (REML)

Maximum likelihood estimates (MLE) of ‘variance components‘ tend to underestimate
these parameters. An alternative to this is the restricted or residual maximum like-
lihood (REML) and very much prefered by Patterson and Thompson, (1971); Harville,
(1977), for estimation of variance components.
Laird and Ware (1982) defined the REML estimation criterion as

LR(θ, σ2|y) =

∫
L(β, θ, σ2|y)dβ (2.46)

These, within a Bayesian framework, corresponds to assuming a locally uniform prior dis-
tribution for the fixed effects β and integrating them out of the likelihood, hence we have
the following Lemma:
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Lemma 3. The restricted (residual) maximum likelihood (REML) function of the model

(2.1) in orthogonal triangular decomposition is given as

LR(θ, σ2|y) =
1

(2πσ2)
N−p

2

exp−‖c−1‖2 /(2σ2)

abs|R00|
M∏
i=1

abs

{ |∆|
|R11(i)|

}

where c−1, R00 and R11(i) are as defined above.

Proof. As earlier found, the likelihood function was given as

L(β, θ, σ2|y) =

M∏
i=1

abs|∆|
(2πσ2)

ni
2

∫ {
exp−[

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2

]/2σ2

(2πσ2)q/2

}
dbi (2.47)

where ȳi, X̄i and X̄i are the augmented data vectors and model matrices. This likelihood

function leads to∫
L(β, θ, σ2|y)dβ =

∫ M∏
i=1

abs|∆|
(2πσ2)

ni
2

∫ {
exp−[

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2

]/2σ2

(2πσ2)q/2

}
dbidβ (2.48)

Through Orthogonal triangular decomposition where⎡
⎣ Zi Xi yi

∆ 0 0

⎤
⎦ = Q(i)

⎡
⎣ R11(i) R10(i) c1(i)

0 R00(i) c0(i)

⎤
⎦ (2.49)

and

∥∥ȳi − X̄iβ − Z̄ibi
∥∥2 =

∥∥QT
(i)(ȳi − X̄iβ − Z̄ibi)

∥∥2
=
∥∥QT

(i)ȳi −QT
(i)X̄iβ −QT

(i)Z̄ibi
∥∥2

=

∥∥∥∥∥∥c(i) −QT
(i)Q(i)

⎡
⎣ R(i)

0

⎤
⎦ β −QT

(i)Q(i)

⎡
⎣ R11(i)

0

⎤
⎦ bi
∥∥∥∥∥∥

2

=

∥∥∥∥∥∥c(i) −
⎡
⎣ R(i)

0

⎤
⎦ β −

⎡
⎣ R11(i)

0

⎤
⎦ bi
∥∥∥∥∥∥

2

=
∥∥c1(i) − R10(i)β −R11(i)bi

∥∥2 +
∥∥c0(i) − R00(i)β

∥∥2

(2.50)

we have

∫
L(β, θ, σ2|y)dβ =

∫ ⎧⎪⎪⎨
⎪⎪⎩

M∏
i=1

abs|∆|
(2πσ2)

ni
2

exp

{∥∥c0(i) − R00(i)β
∥∥2

−2σ2

}∫ {exp
‖c1(i)−R10(i)β−R11(i)bi‖2

−2σ2

}
(2πσ2)q/2

dbi

⎫⎪⎪⎬
⎪⎪⎭ dβ

(2.51)
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Using the same change-of-variable technique as in (2.35) and same orthogonal triangular

decomposition as in (2.31) which led to (2.40) we have

∫
L(β, θ, σ2|y)dβ =

∫ M∏
i=1

exp
‖c−1‖2

−2σ2
exp

‖c0 − R00β‖2 /(−2σ2)

(2πσ2)ni/2
abs

{ |∆|
|R11(i)|

}
dβ (2.52)

Applying same change-of-variable technique as in (2.35);

Let

u = (c0 − R00β)/σ

⇒ du =
−R00dβ

σp

⇒ dβ =
σpdu

abs|R00|

(2.53)

Thus we have

M∏
i=1

∫
exp

‖c0 − R00β‖2 /(−2σ2)

(2πσ2)ni/2
dβ =

∫
exp

−‖u‖2 /2

(2πσ2)N/2
× σpdu

abs|R00|

=
σp

abs|R00|
∫

exp
−‖u‖2 /2

(2πσ2)p/2
du× 1

(2πσ2)(N/2−p/2)

=
1

(2πσ2)
N−p

2 abs|R00|

∫
exp

−‖u‖2 /2

(2π)p/2
du

=
1

(2πσ2)
N−p

2 abs|R00|
(2.54)

Incorporating (2.52) and (2.54) in (2.51) we end up getting the REML as given by Laird and

Ware (1982),

LR(θ, σ2|y) =

∫
L(β, θ, σ2|y)dβ

=
1

(2πσ2)
N−p

2

exp−‖c−1‖2 /(2σ2)

abs|R00|
M∏
i=1

abs

{ |∆|
|R11(i)|

} (2.55)

Introducing logarithms we get the log-restricted likelihood of the above REML function as:

lR(θ, σ2|y) = logLR(θ, σ2|y)

=
−(N − p)

2
log(2πσ2) − ‖c−1‖2

2σ2
− log(abs|R00|) +

M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

(2.56)
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producing the conditional estimate σ̂2
R(θ) as

∂lR(θ, σ2|y)

∂σ2
= 0

⇒ −N − p

2σ2
+

‖c−1‖2

2σ4
= 0

⇒ σ̂2
R(θ) =

‖c−1‖2

N − p

(2.57)

from where we obtain the profiled log-restricted-likelihood by substituting the estimate σ̂2
R(θ)

as

lR(θ|y) = lR(θ, σ̂2
R(θ)|y)

=
−(N − p)

2
log(2πσ̂2

R(θ)) − ‖c−1‖2

2σ̂2
R(θ)

− log(abs|R00|) +

M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

=
−(N − p)

2
log

{
2π ‖c−1‖2

N − p

}
− ‖c−1‖2 (N − p)

2 ‖c−1‖2 − log(abs|R00|) +
M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

=
−(N − p)

2
log

{
2π

N − p

}
− (N − p)

2
.2log ‖c−1‖

− (N − p)

2
− log(abs|R00|) +

M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

= constant− (N − p)log ‖c−1‖ − log(abs|R00|) +
M∑
i=1

log

{
abs(

|∆|
|R11(i)|)

}

(2.58)

Components of the profiled log-restricted-likelihood in (2.58) are similar to those in the
profiled log-likelihood in (2.44) except that the log of norm of the residual vector has a
different multiplier and there is an extra determinant term of

log(abs|R00|) = log|
M∑
i=1

XT
i Σ−1

i Xi|/2 (2.59)

Evaluation of the restricted maximum likelihood estimates (REML) is done by optimizing
the profiled log-restricted-likelihood (2.58) with respect to θ only.
Using the resulting REML estimate θ̂R, the REML estimate of σ2 can be obtained as σ̂R(θ̂R).
REML estimated BLUPs of the random effects are obtained by re placing θ with θ̂R in (2.45)
to become

b̂i(θ̂R) = R−1
11(i)(c1(i) − R10(i)β̂(θ̂R)) (2.60)

REML criterion only depends on θ and σ. In REML criterion we do not speak of REML
estimates of β but we can evaluate the “best guess” at β from (2.41) once θ̂Rhas been
determined.
Major difference between the likelihood function and the restricted likelihood function is
that likelihood function is invariant to one-to-one reparametirizations of the fixed effects (for
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example, a change in the contrasts representing a categorical variable) while the latter is
not.
Changing the Xi matrices results in change in log(abs|R00|) and a corresponding change
in lR(θ|y), i.e the profiled log-restricted-likelihood. Thus LME models with different fixed
effects structures fit using REML cannot be compared on the basis of their restricted likeli-
hoods. Hence under such circumstances the likelihood ratio tests are not valid.

2.2 An alternative derivation to penalized Least-Squares

Problem

Consider the general form of a Mixed Effect Model with a single level of random effects
labeled (2.1), that is,

yi = Xiβ + Zibi + εi, i = 1, . . . , m (2.61)

where β, and εi are as defined in (2.1). Xi is a known fixed effects regressor (ni × p) matrix
for the p-dimensional fixed-effects vector β, and Zi is a known random effects regressor
(ni × q) matrix for the q-dimensional random-effects vector bi. Noting that ∆ is a relative
precision factor of the random effects, expressed relative to the precision 1/σ2, of the εi,
we can have bi ∼ N(0, σ2(∆T ∆)−1). This is because a relative precision factor is any q × q
matrix that satisfies

ψ = ∆T ∆

One possible ∆ is the Cholesky factor (see Appendix A.2.1) of ψ, which will be non-singular
since the later is positive definite. Others can be used.
Generally, ∆ (and hence ψ) depend on a k-dimensional parameter vector θ. Typically Z, ψ
and ∆ are very large and sparse (mostly zeros) while k, the dimension of θ, is small.
Xi has full column rank and hence ∆T ∆ is positive definite. If Xi is rank deficient meaning
that ∆T ∆ is singular, then the model can be transformed to an alternative model that fulfills
the desired conditions.
The parameters of the model are β,σ2, and whatever parameters determine ∆. We use θ to
represent an unconstrained set of parameters that determine ∆. The likelihood function for
the parameters β,θ and σ2 of the model (2.61) is given as

L(β, θ, σ2|y) =
abs|∆|

(2πσ2)
(n+q)

2

∫
exp

{−[‖(y −Xβ − Zb)‖2 + ‖∆b‖2]

2σ2

}
db (2.62)

which is just like an earlier given equation defined in (2.20) The restricted (or residual)
maximum likelihood estimates (REML) of θ and σ2 optimize a related criterion that can be
written as

LR(θ, σ2|y) =

∫
L(β, θ, σ2|y)dβ (2.63)

as defined by Laird and Ware (1982).
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Expressions (2.62) and (2.63) can be expressed succinctly (expressed briefly and clearly)
using the solution to a penalized least-squares problem.
For fixed value of θ, the penalized least-squares problem could be defined by

• the augmented model matrix Ψ and

• the augmented response vector ȳ

leading to

min
b,β

∥∥∥∥ȳ − Ψ(θ)

[
b
β

]∥∥∥∥
2

where

Ψ(θ) =

[
Z X

∆(θ) 0

]

and

ȳ =

[
y
0

]

Hence we have∥∥∥∥
[

y
0

]
−
[

Z X
∆(θ) 0

] [
b
β

]∥∥∥∥
2

=

∥∥∥∥
[

y
0

]
−
[

Zb + Xβ
∆(θ)b + 0

]∥∥∥∥
2

=

∥∥∥∥
[

y − Zb −Xβ
0 − ∆(θ)b + 0

]∥∥∥∥
2

(2.64)

By forming

Ψe =
[

Ψ ȳ
]

and letting Re be the Cholesky decomposition (see Appendix A.2.1) of ΨT
e Ψe, then we can

have,

Ψe =
(

Ψ ȳ
)

=

(
Z X y
∆ 0 0

)

which implies

ΨT
e Ψe =

⎛
⎝ ZT ∆T

XT 0T

yT 0T

⎞
⎠( Z X y

∆ 0 0

)

=

⎛
⎝ ZTZ + ∆T ∆ ZTX ZTy

XTZ XTX XTy
yTZ yTX yTy

⎞
⎠

= RT
e Re

(2.65)
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where

Re =

⎛
⎝ RZZ RZX rZy

0 RXX rXy

0 0 ryy

⎞
⎠ (2.66)

Matrices RZZ , a q × q and RXX , a p× p are upper triangular. Conditions that ψ is positive
definite and X is of full column rank ensures that Ψ has full column rank, hence RZZ and
RXX are non-singular. Corresponding vectors, rZy is q-dimensional, rXy is p-dimensional
and ryy is a scalar.
Representation (2.66) is a particular form of the mixed model equations by Henderson (1984).

Lemma 4. The maximum likelihood deviance is given as

−2l(β, θ, σ2) = log

{ |ZT Z + ∆T ∆|
|∆T ∆|

}
+ nlog(2πσ2) +

r2
yy + ‖rXy −RXXβ‖2

σ2

Proof. Writing the blocks in the opposite order from which they are typically written, that

is,

a = (−bT ,−βT , 1)T ,

we can write the numerator of the exponent in the integral in (2.62) as

‖(y − Xβ − Zb)‖2 + ‖∆b‖2 = aT ΨT
e Ψea

Thus,

aT ΨT
e Ψea = aT

⎛
⎝ ΨT

ȳT

⎞
⎠( Ψ ȳ

)
a

= aT

⎛
⎝ ΨT Ψ ΨT ȳ

ȳT Ψ ȳT ȳ

⎞
⎠a

= aT

⎛
⎜⎜⎜⎝

ZTZ + ∆T ∆ ZTX ZT y

XTZ XTX XTy

yTZ yTX yTy

⎞
⎟⎟⎟⎠ a

= (−bT ,−βT , 1)

⎛
⎜⎜⎜⎝

ZT Z + ∆T ∆ ZT X ZT y

XTZ XTX XTy

yTZ yTX yTy

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

−bT

−βT

1

⎞
⎟⎟⎟⎠

(2.67)

whose expansion is equivalent to expanding

‖(y − Xβ − Zb)‖2 + ‖∆b‖2
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But from

ΨT
e Ψe = RT

e Re

where Re is as defined in (2.66), we have

aT ΨT
e Ψea = aTRT

e Rea

= ‖Rea‖2

=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

RZZ RZX rZy

0 RXX rXy

0 0 ryy

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

−bT

−βT

1

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

−RZZb− RZXβ + rZy

0 − RXXβ + rXy

0 + 0 + ryy

⎞
⎟⎟⎟⎠
∥∥∥∥∥∥∥∥∥

2

= ‖rZy −RZXβ − RZZb‖2 + ‖rXy − RXXβ‖2 + r2
yy

(2.68)

Now, from (2.62), and by a simple change of variable, we get the likelihood function as

L(β, θ, σ2|y) =
abs|∆|

(2πσ2)
n
2

∫
1

(2πσ2)
q
2

exp

{
−[‖(y − Xβ − Zb)‖2 + ‖∆b‖2]

2σ2

}
db

=
abs|∆|

(2πσ2)
n
2

exp

{
‖rXy − RXXβ‖2 + r2

yy

−2σ2

}

×
∫

1

(2πσ2)
q
2

exp

{
‖rZy − RZXβ −RZZb‖2

−2σ2

}
db

=
abs|∆|

(2πσ2)
n
2

exp

{
‖rXy − RXXβ‖2 + r2

yy

−2σ2

}
× 1√|ZTZ + ∆T ∆|

(2.69)

The simple change of variable on the integral part leading us to the above result is solved

by letting

Ω =
(rZy −RZXβ − RZZb)

σ

⇒ dΩ = −σ−qRZZdb

⇒ dΩ = σ−qabs|RZZ |db

⇒ db =
σqdΩ

abs|RZZ|
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resulting in

∫
1

(2πσ2)
q
2

exp

{
‖rZy − RZXβ −RZZb‖2

−2σ2

}
db =

1

abs|RZZ |
∫ −‖Ω‖2 /2

(2π)q/2
dΩ

=
1

abs|RZZ |
=

1√|ZTZ + ∆T ∆|
Taking logarithms of (2.69) and writing it in the form of a deviance gives

l(β, θ, σ2) = logL(β, θ, σ2|y)

=
−n
2
log(2πσ2) − 1

2
log

{ |ZTZ + ∆T ∆|
|∆T ∆|

}
− 1

2

r2
yy + ‖rXy −RXXβ‖2

σ2

⇒ −2l(β, θ, σ2) = log

{ |ZT Z + ∆T ∆|
|∆T ∆|

}
+ nlog(2πσ2) +

r2
yy + ‖rXy −RXXβ‖2

σ2.

(2.70)

Same results were obtained by Bates and DebRoy (2004) This leads to the following results
for the maximum likelihood estimates (MLE):

• The conditional MLE of the fixed-effects, β̂(θ),

∂ − 2l(β, θ, σ2)

∂β
= 0

⇒ −2RXX(rXy − RXXβ)

σ2
= 0

⇒ RXXrXy − R2
XXβ = 0

⇒ β̂(θ) = R−1
XXrXy

(2.71)

which could be equal to (= (XTX)−1XTy) in classical linear modeling.

• The conditional MLE of the variance, σ̂2(θ),

∂ − 2l(β, θ, σ2)

∂σ2
= 0

⇒ n

σ2
−
r2
yy +
∥∥∥rXy − RXX β̂(θ)

∥∥∥2

σ4
= 0

⇒ σ̂2(θ) =
r2
yy +
∥∥rXX −RXX(R−1

XXrXy)
∥∥2

n

⇒ σ̂2(θ) =
r2
yy

n

(2.72)

26



• The profiled log-likelihood, l̂(θ), a function of θ only, is given by

−2l̂(θ) = log

{ |ZTZ + ∆T ∆|
|∆T ∆|

}
+ nlog(

2πr2
yy

n
) +

r2
yy +
∥∥rXy −RXXR

−1
XXrXy

∥∥2
r2
yy

n

= log

{ |ZTZ + ∆T ∆|
|∆T ∆|

}
+ n(1 + log(

2πr2
yy

n
))

(2.73)

• The conditional modes of random effects, evaluated at the conditional estimates of β
are evaluated from the exponent value in the integrand value above (which are the
residual sum of squares). It is arrived at through minimizing these residual sum of
squares;

∂ ‖rZy − RZXβ −RZZb‖2

∂b
= 0

⇒ −2RZZ(rZy −RZXβ − RZZb) = 0

⇒ b̂(β, θ) = R−1
ZZ(rZy − RZX β̂(θ))

(2.74)

Thus it satisfies

RZZb̂(β, θ) = rZy − RZX β̂(θ)

• The conditional distribution of b is

b|y, β, θ, σ2 ∼ N(b̂(β, θ), σ2(ZT Z + ∆T ∆)−1)

Lemma 5. The restricted maximum likelihood deviance is given as

−2lR(θ, σ2) = log

{ |ZT Z + ∆T ∆||RXX |2
|∆T ∆|

}
+ (n− p)log(2πσ2) +

r2
yy

σ2

Proof. As in (2.69), we can apply a simple change of variable technique to evaluate the

REML by letting

ω =
rXy − RXXβ

σ

⇒ dω =
−RXXdβ

σp

⇒ dω =
abs|RXX |dβ

σp

⇒ dβ =
σpdω

abs|RXX |
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Thus (2.63) becomes

LR(θ, σ2|y) =

∫
L(β, θ, σ2|y)dβ

=
abs|∆|

(2πσ2)n/2
exp

{
‖rXy − RXXβ‖2 + r2

yy

−2σ2

}
× 1√|ZTZ + ∆T ∆|dβ

=
abs|∆|

(2πσ2)(n−p)/2
exp

{
r2
yy

−2σ2 ×√|ZTZ + ∆T ∆|

}∫
1

(2πσ2)p/2
exp

{
‖rXy − RXXβ‖2

−2σ2

}
dβ

=

{ |ZT Z + ∆T ∆|
|∆T ∆|

}−1/2

exp

{
r2
yy

−2σ2 × abs|RXX |
}
.

1

(2πσ2)(n−p)/2

=

{ |ZT Z + ∆T ∆||RXX |2
|∆T ∆|

}−1/2

exp

{
r2
yy

−2σ2

}
× 1

(2πσ2)(n−p)/2

(2.75)

Taking logarithms and giving the result in form of a deviance gives

lR(β, θ, σ2) = logLR(β, θ, σ2|y)

= −1

2
log

{ |ZTZ + ∆T ∆||RXX |2
|∆T ∆|

}
− (n− p)

2
log(2πσ2) +

r2
yy

−2σ2

⇒ −2lR(θ, σ2) = log

{ |ZTZ + ∆T ∆||RXX |2
|∆T ∆|

}
+ (n− p)log(2πσ2) +

r2
yy

σ2

(2.76)

Noting that

|ZTZ + ∆T ∆||RXX |2 = |ΨTΨ|,

then we have

• The conditional REML estimate of the variance, σ̂2
R(θ),

∂[−2lR(θ, σ2)]

∂σ2
= 0

⇒ (n− p)

σ2
− r2

yy

σ4
= 0

⇒ σ̂2
R(θ) =

r2
yy

(n− p)

• The profiled log-restricted likelihood is given by

−2lR(θ) = log

{ |ΨT Ψ|
|∆T ∆|

}
+ (n− p)log

{
2πr2

yy

(n− p)

}
+

r2
yy

(r2
yy)/(n− p)

= log

{ |ΨT Ψ|
|∆T ∆|

}
+ (n− p)

{
1 + log

{
2πr2

yy

(n− p)

}}
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2.3 Review of Nonlinear Mixed Effects (NLME) Mod-

els

As it has been explained by Pinheiro and Bates (1995) we use NLME models because of
their interpretability, parsimony and validity beyond the observed range of the data. The
most common application of NLME models is for repeated measures data and in particular,
longitudinal data.
The NLME model for repeated measures proposed by Lindstrom and Bates (1990) can be
thought of as a hierarchical model.
Pinheiro and Bates (1995) used a generalization of Lindstrom and Bates (1990) that in some
ways generalizes both the linear mixed-effects model of Laird and Ware (1982) and the usual
nonlinear model for the independent data, Bates and Watts (1988). According to Pinheiro
and Bates (1995), at one level the jth observation on the ith group is modeled as

yij = f(φij, ϑij) + εij , i = 1, · · · ,M ; j = 1, · · · , ni (2.77)

where M is the number of groups, ni is the number of observations on the ith group and f
is a general, real-valued, differentiable function of a group-specific parameter vector φij and
a covariate vector ϑij , and εij is a normally distributed within group error term.
The function f is nonlinear in at least one component of the group-specific parameter vector
φij, which is modeled as

φij = Aijβ +Bijbi, bi ∼ N(0, φ) (2.78)

where β is p-dimensional vector of fixed effects, bi is a q-dimensional random effects vector
associated with ith group (not varying with j) with variance-covariance matrix φ.
Aij and Bij are matrices of appropriate dimensions depending on the group and possibly on
the values of some covariates at the jth observation.
The model is a slight generalization of that described in Lindstrom and Bates (1990) since
Aijβ and Bijbi can depend on j and allows the incorporation of “time-varying” covariates in
the fixed effects or the random effects for the model.
Two very important assumptions taken into account for this model are

• observations corresponding to different groups are independent.

• within-group errors εij are independently distributed as N(0, σ2) and are independent
of the bi.

First developments of NLME models appear in Sheiner and Beal (1980) whose estimation
methods are widely used in pharmacokinetics. Their model is similar to (2.77). They
developed a MLE method based on a first-order Taylor expansion of the model function
around 0, the expected value of the random effects vector b.
Mallet, Mentre, Steimer, Lokiek (1988) proposed a nonparametric maximum likelihood
method for nonlinear mixed-effects models. They made use of a model similar to (2.77)
but made no assumptions about the distribution of the random effects. They assumed the
conditional distribution of the response vector given the random effects. Their objective of
the estimation procedure was to get probability distribution of the group-specific coefficients,
φij, that maximizes the likelihood of the data.
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Mallet (1986) showed that the maximum likelihood solution is a discrete distribution with
the number of discontinuity points less than or equal to the number of the groups in the
sample.
Davidian and Gallant (1992) introduced a smooth, nonparametric MLE method for NLME.
Their model was similar to (2.77), but with a more general definition for the group-specific
coefficients

φij = g(β, bi, ϑij) (2.79)

where g is general, possibly nonlinear function.
Just as Mallet et al. (1988), they assume the conditional distribution of the response vector
given the random effects is known (up to the parameters that define it) but the distribution
of random effects is free to vary within a class of smooth densities defined by Gallant and
Nychka (1987)
Bennett and Wakefield (1993) and Wakefield (1996) described a Bayesian approach using hi-
erarchical models for nonlinear mixed-effects. First stage of their model was similar to (2.77).
The distributions of random effects and errors εij were assumed to be known upto population
parameter. Prior distributions for the population parameters must be provided. To approx-
imate the posterior density of the random effects, Markov-chain Monte Carlo methods were
used, for example, Gibbs Sampler by Geman and Geman (1984) or the Metropolis algorithm
by Hastings (1970).
Vonesh and Carter (1992) developed a mixed-effects model that is nonlinear in the fixed
effects but linear in the random effects. Their model was

yi = f(β, ϑi) + Zi(β)bi + εi (2.80)

where as before
β is the fixed effects, bi is the random effects and ε is the within-group error term.
ϑ is a matrix of covariates while Zi is a full-rank matrix of known functions of the fixed
effects β. As usual bi ∼ N(0, φ) and εi ∼ N(0, σ2I) and the two vectors are independent of
each other.
Vonesh and Carter (1992) in some way incorporated in their model the approximation sug-
gested by Sheiner and Beal (1980) and Lindstrom and Bates (1990) though their approach
concentrates more on inferences about the fixed effects and less on the variance-covariance
components of the random effects.

2.3.1 Estimation in NLME Models

Different methods have been proposed to estimate parameters in the NLME model in (2.77).
In our review we restrict ourselves on methods discussed by Pinheiro and Bates (1995) which
are strictly based on the likelihood function. Pinheiro and Bates (1995) based their maximum
likelihood estimate in (2.77) on the marginal density of y

f(y|β, σ2, φ1, · · · , φQ) =

∫
f(y|b, β, σ2) f(b) db (2.81)

where f(y|β, σ2, φ1, · · · , φQ) is the marginal density of y , f(y|b, β, σ2) is the conditional
density of y given the random effects b and f(b) is the marginal distribution of b.
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Generally, the integral above does not have a closed-form expression when the model function
f is nonlinear in bi, so different approximations have been proposed for estimating it.
We can therefore get the marginal density of responses y by first getting the conditional
density of y given the random effects b as

f(y|b, β, σ2) =
1

(2πσ2)ni/2
exp

{
−‖yi − f(φi, ϑi)‖2

2σ2

}
(2.82)

where

E(yi) = f(φi, ϑi)

and

var(yi) = σ2I

implying that yi ∼ N(f(φi, ϑi), σ
2I).

Also the marginal distribution of b becomes

f(b|ψ1, · · · , ψQ) =
1

(2π)q/2|ψ|1/2
exp

{−(bT
i ψ

−1bi)

2

}

=
1

(2π)q/2σqabs|∆|−1
exp

{
−‖∆bi‖2

2σ2

} (2.83)

in which case

E(bi|ψ1, · · · , ψQ) = 0

and

var(bi|ψ1, · · · , ψQ)) = ψ1, · · · , ψQ

Thus distribution of bi ∼ N(0, ψ1, · · · , ψQ).
Again

ψ−1 = σ−2∆T ∆

⇒ |ψ| = σ2q|(∆T ∆)−1|
⇒ |ψ|1/2 = σqabs|∆|−1

Thus from (2.82) and (2.83), the marginal density of y becomes

f(y|β, σ2, ψ1, · · · , ψQ) =

∫
f(y|b, β, σ2) f(b) db

= L(β, σ2, ψ|y)

=

M∏
i=1

∫
f(yi|bi, β, σ

2) f(bi|ψi) dbi

=
M∏
i=1

∫
1

(2πσ2)ni/2
exp

{
−‖yi − fi(φi, ϑi)‖2

2σ2

}

× 1

(2π)q/2σqabs|∆|−1
exp

{
−‖∆bi‖2

2σ2

}
dbi

(2.84)

31



Now the likelihood function becomes

L(β, σ2, ψ|y) = f(y|β, σ2,∆)

=

M∏
i=1

1

(2πσ2)ni/2

1

(2π)q/2σqabs|∆|−1

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2

2σ2

}
dbi

=
M∏
i=1

1

(2πσ2)[ni+q]/2abs|∆|−1

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2

2σ2

}
dbi

=
abs|∆|M

(2πσ2)[N+Mq]/2

M∏
i=1

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2

2σ2

}
dbi

=
abs|∆|M

(2πσ2)[N+Mq]/2

M∏
i=1

∫
exp

{
−‖yi − fi(β,bi)‖2 + ‖∆bi‖2

2σ2

}
dbi

(2.85)

where

fi(β,bi) = fi(φi, ϑi)

= fi[φi(β,bi), ϑi]

Linear Mixed Effects Approximation

Lindstrom and Bates (1990) Algorithm alternates between two steps

• a penalized nonlinear least squares (PNLS) step, and

• a linear mixed effects (LME) step

In short their estimation approximation moves from the single-level linear mixed effects
model given in (2.1) to the single-level nonlinear mixed effect model in (2.77), out of which
we get the penalized nonlinear least squares objective function as

M∑
i=1

[‖yi − fi(β,bi)‖2 + ‖∆bi‖2] (2.86)

From (2.1), if σ2I and ψ = σ2(∆T ∆)−1 are known, and φ, a linear function of β and b(φ(Aiβ+
Bbi) = Xiβ +Zibi), then with the usual definition of X and Z, the standard estimators for
β and b are the generalized least squares estimators

β̂lin(θ) = (XT (Σ(∆))−1X)−1XT (Σ(∆))−1y

where

Σ(∆) = I + Z̄(∆T ∆)−1Z̄T (2.87)

and

b̂lin = b̂lin(θ) = (∆T ∆)−1Z̄T [Σ(∆)]−1(y −Xβ̂lin(θ))
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Note that θ contains the unique elements of ∆.
Estimates β̂lin and b̂lin, jointly maximize the function

glin(β,b|y) = −1

2
σ−2(y −Xβ − Zb)2 − 1

2
σ−2bT ∆T ∆b

= −1

2
σ−2[‖y −Xβ − Zb‖2 + ‖∆b‖2]

which

• for fixed β, is the logarithm of the posterior density of b (up to a constant)

• for fixed b, is the log-likelihood for β (up to a constant)

The two terms in the above equation are a sum of squares and a quadratic term in b.
By transforming the quadratic term in b to an equivalent sum of squares term, we can
treat the optimization purely as a least squares problem, which is easy to translate
into nonlinear setting.

Lemma 6. The Linear Mixed Effects estimation problem for obtaining the estimates in

NLME models can be defined as

l̄(β, σ,∆|y) = l̄(β, σ, θ|θ(w), y)

= −1

2
log|σ2(I + Z(w)∆−1∆−1T

ZwT

)|

− 1

2
σ−2[w(w) − X(w)β]T (I + Z(w)∆−1∆−1T

ZwT

)−1[w(w) −X(w)β]

where the desired estimates are β(ML), σ(ML) and θ(ML) which maximize l̄.

Proof. The least squares problem is created by augmenting the data vector with “pseudo-

data” as

ȳi = X̄iβ + Z̄ibi + ēi

where

X̄i =

⎡
⎣ Xi

0

⎤
⎦ , ȳi =

⎡
⎣ yi

0

⎤
⎦ , Z̄i =

⎡
⎣ Zi

∆

⎤
⎦

and

ēi ∼ N(0, σ2I)

In a nonlinear mixed effects (NLME) model, both the maximum likelihood estimator, β̂(θ)

and the posterior mode, b̂(θ) maximize the function

glin(β,b|yi) = −1

2
(yi − fi(β,bi))

T (yi − fiβ,bi) − 1

2
σ−2bT ∆T ∆b

= −1

2
σ−2[‖yi − fiβ,bi‖2 + ‖∆b‖2]

(2.88)
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in which case, for fixed β, g is a constant plus the log of the posterior density of b.

Thus it is clear that the b that maximizes g for a given value of β (fixed β) is the posterior

mode. β̂ is a MLE relative to an approximate marginal density of y.

Just as in the linear case, the estimates β̂ and b could be calculated as a solution to a

nonlinear least squares problem formed by augmenting the data vector with “pseudo-data”

as

ȳ = f̄(β,b) + ε̂ (2.89)

where

ȳ =

⎡
⎣ y

0

⎤
⎦ , f̄(β,b) =

⎡
⎣ f(β,b)

∆b

⎤
⎦

and

ε̄ ∼ N(0, σ2I)

We wish to define the maximum likelihood estimators for θ with respect to the marginal

density of y, that is,

f(y|β, σ2, ψ1, · · · , ψQ) =

∫
f(y|b, β, σ2) f(b) db (2.90)

The expectation function f(β,b) is nonlinear in b. Thus there is no closed form expres-

sion for this density and calculation of such estimates is very difficult.

Hence, instead, we approximated the conditional distributions of y for b near b̂(θ), that is,

y|b ∼ N(f(β,b), σ2I)

where

f(β,b) = f [φ(Aβ +Bb), ϑ]

with a multivariate normal with expectation that is linear in b.

To accomplish this we approximated the residual y − f(β,b) near b̂ as

y − f(β,b) ≈ y − [f(β, b̂) + Ẑb − Ẑb̂]
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where

Ẑi = Ẑi(θ)

=
∂fi

∂bT
i

|β̂,b̂

= (
∂fi

∂φT
i

|β̂,b̂)Bi

= f ′
i(Aβ +Bbi)Bi

and thus

Ẑ = Ẑ(θ)

= diag(Ẑ1, · · · , ẐM)

=
∂f

∂bT
|β̂,b̂

= f ′(Aβ +Bb)B

Note that Ẑ is a function of θ, the reason being that β̂ and b̂ are functions of θ.

Then we have that

y − f(β, b̂) + Ẑb̂− Ẑb|b ∼ N(0, σ2I)

Hence the approximate conditional distribution of y becomes

y|b ∼ N(f(β, b̂) − Ẑb̂ + Ẑb, σ2I)

and the distribution of bi is given as

bi ∼ N(0, σ2[∆T ∆]−1)

Thus the two expressions above allows us to approximate the marginal distribution of y as

yi ∼ N(f(β, b̂) − Ẑb̂, σ2Σi(∆))

where Σ(∆) is as defined in (2.87)

This kind of approximation has been used in a similar setting by Stiratelli et al. (1984).

Algorithm of Sheiner and Beal (1980) use similar approximation but evaluated at the expec-

tation of the random effects (at b = 0 in this model) rather than at the current estimates.

Simplication reduces the computational burden if a Newton-Raphson type algorithm is used

but may result in poor estimates.
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More accurate method of approximating the marginal distribution of y at the current esti-

mates of the random effects as discussed by Wolf in a proposed application of the Estimation

Maximization (EM) algorithm to maximum likelihood (ML) estimation for the nonlinear

random effects model.

The log-likelihood corresponding to the approximate marginal distribution above is

l(β, σ,∆|y) = −1

2
log|σ2Σi(∆)| − 1

2
σ−2[y − fi(β, b̂) + Ẑb̂]T (Σi(∆))−1[y − fi(β, b̂) + Ẑb̂]

(2.91)

where b and Ẑ depend on θ.

Define β(ML), σ(ML) and θ(ML) to be maximum likelihood estimators for β, σ and θ with

respect to l, (2.91.) As in the linear case, the two estimators for β are equivalent, that is,

β(ML) = β̂(θ(ML)), from the fact that, they both maximize l(β, σ(ML), θ(ML)|y).
The inverse second derivative matrix of l provides an estimate for an approximate

variance-covariance matrix for β(ML), σ(ML) and θ(ML).

Method of defining restricted maximum likelihood (REML) estimators is the same as

that for the MLE except that l above becomes

lR(β, σ,∆|y) = −1

2
log|σ−2X̂T (Σi(∆))−1X̂| + l(β, σ,∆|y) (2.92)

where

X̂i = X̂i(θ)

=
∂fi

∂βT
|β̂,b̂

= (
∂fi

∂φT
i

|β̂,b̂)Ai

= f ′
i(Aβ +Bbi)Ai

and thus

X̂ = X̂(θ)

=

⎡
⎢⎢⎢⎣

X̂1

...

X̂M

⎤
⎥⎥⎥⎦

=
∂f

∂βT
|β̂,b̂

= f ′(Aβ +Bb)A
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We define estimators β(RML), σ(RML) and θ(RML) as those that maximize lR.

REML is based on N − p linearly independent error contrasts.

In the nonlinear model, the derivative matrix X̂, which defines these errors contrast depends

on β̂ and b̂.

However, it has been noted that since the subspace spanned by the columns of this matrix

depends only on intrinsic nonlinearity and not a parameter effects nonlinearity (Bates and

Watts, (1980)), it will be nearly constant near the estimates.

The two step algorithm proposed for finding θ(ML) by Lindstrom and Bates (1990)

are

1. Pseudo-data (PD) step

Given the current estimate θ(w) for θ, then β(w) = β̂(θ(w)),bw = b̂(θ(w)),Xw =

X̂(θ(w)),Zw = Ẑ(θ(w)) can be estimated.

2. Linear mixed effects (LME) step

Given bw and Zw, let β(w+1), σ(W+1) and θ(w+1) be the values that maximize

l(β, σ, ∆|y) = l(β, σ, θ|θ(w), y)

= −1
2
log|σ2Σi(∆)| − 1

2
σ−2[y − fi(β, b̂) + Ẑb̂]T (Σi(∆))−1[y − fi(β, b̂) + Ẑb̂]

= −1
2
log|σ2(I + Z(w)∆−1∆−1T

ZwT

)| − 1
2
σ−2[y − fi(β,b(w)) + Z(w)b(w)]T

× (I + Z(w)∆−1∆−1T

ZwT

)−1[y − fi(β,b(w)) + Z(w)b(w)]

(2.93)

We write the dependence of l on θ(w) explicitly to emphasize the dependence on the

value of θ at which b̂ and Ẑ are evaluated.

The algorithm consists of iterating between these two steps until convergence.

The LME above does not quite respond to a LME estimation problem. This is

because the residual

y − fi(β,b
(w)) + Z(w)b(w) (2.94)

is nonlinear in β.

This would require second derivatives of the model function, f with respect to fixed effects,

β.
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To avoid this, we approximate the residual near β(w) by:

y − fi(β,b
(w)) + Z(w)b(w) ≈ y − [fi(β,b

(w)) + X(w)(β − β(w)) − Z(w)b(w)]

= y − [fi(β,b
(w)) + X(w)β(w) + Z(w)b(w) −X(w)β]

= w(w) − X(w)β

(2.95)

where

X(w) = X̂(θ(w))

w(w) = y − [fi(β,b
(w)) + X(w)β(w) + Z(w)b(w)

Thus, we can define

l̄(β, σ,∆|y) = l̄(β, σ, θ|θ(w), y)

= −1

2
log|σ2(I + Z(w)∆−1∆−1T

ZwT

)|

− 1

2
σ−2[w(w) − X(w)β]T (I + Z(w)∆−1∆−1T

ZwT

)−1[w(w) −X(w)β]

(2.96)

Then the LME step with l̄ is a linear mixed effects estimation problem of the type
discussed in Laird and Ware (1982).
Lindstrom and Bates (1990) found that this new LME step will result in the desired esti-
mates since β(ML), σ(ML) and θ(ML) maximize l̄.
Method for obtaining the REML estimates is exactly the same as that for the MLE except
l̄ is replaced by

l̄R(β, σ, θ|θ(w), y) = −1

2
log|σ−2X(w)T

(I + Z(w)∆−1∆−1T

ZwT

)−1X(w)| + l̄(β, σ, θ|θ(w), y)

(2.97)

At this point it is worth noting that X(w) depends on both β̂(w) and b̂(w)).
Therefore changes in the fixed effects model or random effects model imply changes in the
penalty factor for log-restricted likelihood. Thus the log-restricted likelihoods from NLME
models with different fixed or random effects models are not comparable.

Laplacian Approximation

Has a number of uses,

• used frequently in Bayesian inference to estimate marginal posterior densities and
predictive distributions as in Tierney and Kadane (1986) and Leonard, Hsu and Tsui
(1989) papers.
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• used for approximating the likelihood function in NLME models.

Considering the single-level NLME model (2.77), to obtain the marginal distribution of y in
(2.85), Pinheiro and Bates (1995) estimated the integral

f(yi|β, σ2,∆) =

∫
(2πσ2)−(ni+q)/2|∆| exp[

−g(β,∆,yi,bi)

2σ2
] dbi (2.98)

where

g(β,∆,yi,bi) = ‖yi − fi(β,bi)‖2 + ‖∆bi‖2 (2.99)

Hence

M∑
i=1

g(β,∆,yi,bi) =
M∑
i=1

[‖yi − fi(β,bi)‖2 + ‖∆bi‖2]

is the objective function defined for the PNLS step of the alternating algorithm defined in
(2.86).
Letting

b̂i = b̂i(β,∆,yi)

= argmin
bi

g(β,∆,yi,bi)

⇒ g′(β,∆,yi,bi) =
∂g(β,∆,yi,bi)

∂bi

⇒ g′′(β,∆,yi,bi) =
∂2g(β,∆,yi,bi)

∂bi∂b
T
i

(2.100)

Considering a Second Order Taylor expansion of g around b̂i, we get

g(β,∆,yi,bi) = g(β,∆,yi, b̂i) + (bi − b̂i)g
′(β,∆,yi, b̂i) +

1

2
(bi − b̂i)

Tg′′(β,∆,yi, b̂i)(bi − b̂i)

� g(β,∆,yi, b̂i) +
1

2
(bi − b̂i)

Tg′′(β,∆,yi, b̂i)(bi − b̂i)

(2.101)

Linear term in the above expansion vanishes since g′(β,∆,yi, b̂i) = 0

Lemma 7. The modified Laplacian approximation of the single-level NLME model (2.77) is

given as

L(β, σ2,∆|y) � |∆|M
(2πσ2)N/2

exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]

M∏
i=1

|G(β,∆,yi)|−1/2

where

G(β,∆,yi) � g′′(β,∆,yi, b̂i)
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Proof. From the likelihood function in (2.85) we have

L(β, σ2,∆|y) = f(y|β, σ2,∆)

=

M∏
i=1

1

(2πσ2)ni/2

1

(2π)q/2σqabs|∆|−1

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2

2σ2

}
dbi

=

M∏
i=1

|∆|
(2πσ2)ni/2

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2 /2σ2

(2πσ2)q/2

}
dbi

(2.102)

From (2.99) and (2.102) and also incorporating the results of (2.101) we have

f(y|β, σ2,∆) =
M∏
i=1

|∆|
(2πσ2)ni/2

∫
exp

{−g(β,∆,yi,bi)/2σ
2

(2πσ2)q/2

}
dbi

�
M∏
i=1

|∆|
(2πσ2)ni/2

∫
exp

{
[g(β,∆,yi, b̂i) + 1

2
(bi − b̂i)

Tg′′(β,∆,yi, b̂i)(bi − b̂i)]/2σ
2

(2πσ2)q/2

}
dbi

=
|∆|M

(2πσ2)N/2
exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]
M∏
i=1

×
∫

exp

{
[− 1

2σ2 (bi − b̂i)
Tg′′(β,∆,yi, b̂i)(bi − b̂i)]

(2πσ2)q/2

}
dbi

=
|∆|M

(2πσ2)N/2
exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]

M∏
i=1

×
∫ |g′′(β,∆,yi, b̂i)|−1/2

(2πσ2)q/2|g′′(β,∆,yi, b̂i)|−1/2
exp− 1

2σ2
(bi − b̂i)

Tg′′(β,∆,yi, b̂i)(bi − b̂i) dbi

=
|∆|M

(2πσ2)N/2
exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]
M∏
i=1

|g′′(β,∆,yi, b̂i)|−1/2

(2.103)

Pinheiro and Bates (1995) considered an approximation to g′′(β,∆,yi, b̂i) similar to the one

used in Gauss-Newton optimization, that is,
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the Hessian

g′′(β,∆,yi, b̂i) =
∂2g(β,∆,yi,bi)

∂bi∂b
T
i

|bi=b̂i

=
∂2

∂bi∂b
T
i

{‖yi − fi(β,bi)‖2 + ‖∆bi‖2} |bi=b̂i

=
∂2

∂bi∂bT
i

{
(yi − fi(β,bi))

T (yi − fi(β,bi)) + bT
i ∆T ∆bi

} |bi=b̂i

=
∂

∂bT
i

{−f ′T
i |b̂i

(yi − fi(β,bi)) − f ′
i |b̂i

[yi − fi(β,bi)]
T + 2bT

i ∆T ∆
}

= −f ′′T
i |b̂i

[yi − fi(β,bi)] + f ′T
i |b̂i

f ′
i |b̂i

− f ′′
i |b̂i

[yi − fi(β,bi)]
T + f ′

i |b̂i
f ′T

i |b̂i
+ 2∆T ∆

= −2f ′′
i |bi=b̂i

[yi − fi(β,bi)] + 2f ′
i |bi=b̂i

f ′
i |bi=b̂i

+ 2∆T ∆

(2.104)

where

f ′
i |bi=b̂i

=
∂fi(β,bi)

∂bi
|bi=b̂i

and

f ′′
i |bi=b̂i

=
∂2fi(β,bi)

∂bi∂bT
i

|bi=b̂i

Since g′′(β,∆,yi, b̂i) = 0

then

g′′(β,∆,yi, b̂i) = −f ′′
i (β,bi)|bi=b̂i

[yi − fi(β,bi)] + f ′
i(β,bi)|bi=b̂i

f ′
i(β,bi)|bi=b̂i

+ ∆T ∆

(2.105)

According to Bates and Watts (1980), the Hessian above involves Second derivatives of f

but, at b̂i the contribution

f ′′
i (β,bi)|bi=b̂i

[yi − fi(β,bi)]

is usually negligible compared to that of

f ′
i(β,bi)|bi=b̂i

f ′
i(β,bi)|bi=b̂i

Therefore the approximation becomes

g′′(β,∆,yi, b̂i) � G(β,∆,yi)

= f ′
i(β,bi)|bi=b̂i

f ′
i(β,bi)|bi=b̂i

+ ∆T ∆

=
∂fi(β,bi)

∂bi

|bi=b̂i

∂fi(β,bi)

∂bT
i

|bi=b̂i
+ ∆T ∆

(2.106)
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Pinheiro and Bates (1995) found their approximation to be similar to the one used in the

Gauss-Newton algorithm for nonlinear least squares with an advantage of requiring only

the first-order partial derivatives of f with respect to the random effects. These first-order

partial derivatives are usually available as a by-product of the estimation of b̂i, which is a

penalized least squares problem.

Combining the likelihood (2.103) with the approximation (2.106), we have

L(β, σ2,∆|y) =
|∆|M

(2πσ2)N/2
exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]

M∏
i=1

|g′′(β,∆,yi, b̂i)|−1/2

� |∆|M
(2πσ2)N/2

exp[− 1

2σ2

M∑
i=1

g(β,∆,yi, b̂i)]

M∏
i=1

|G(β,∆,yi)|−1/2

(2.107)

Thus the modified Laplacian approximation to the log-likelihood of the single-level NLME
model (2.77) becomes

logL(β, σ2,∆|y) = lLA(β, σ2,∆|y)

=
−N
2
log(2πσ2) +Mlog|∆| − 1

2

{
M∑
i=1

log|G(β,∆,yi)| + σ−2
M∑
i=1

g(β,∆,yi, b̂i)

}

(2.108)

Since b̂i does not depend on σ2, for given β and ∆ the maximum likelihood estimate of σ2

based on the Laplacian approximation to the log-likelihood (lLA) in (2.108) is

∂(lLA(β, σ2,∆|y))

∂σ2
=

∂

∂σ2

{−N
2
log(2πσ2) +Mlog|∆| − Θ

}
= 0

⇒ −N
2σ2

+

∑M
i=1 g(β,∆,yi, b̂i)

2σ4
= 0

⇒ σ̂2 = σ̂2(β,∆,y) =

∑M
i=1 g(β,∆,yi, b̂i)

N

(2.109)

after letting

Θ =
1

2

{
M∑
i=1

log|G(β,∆,yi)| + σ−2

M∑
i=1

g(β,∆,yi, b̂i)

}
(2.110)
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Pinheiro and Bates (1995) obtained the profiled Laplacian approximation to the log-likelihood
(lLAp) on σ2 to reduce the dimension of the optimization problem, as

lLAp(β,∆) =
−N
2
log(2πσ̂2) +Mlog|∆| − 1

2

{
M∑
i=1

log|G(β,∆,yi)| +
∑M

i=1 g(β,∆,yi, b̂i)

σ̂2

}

=
−N
2
log(2πσ̂2) +Mlog|∆| − 1

2

{
M∑
i=1

log|G(β,∆,yi)| + N
∑M

i=1 g(β,∆,yi, b̂i)

σ̂2 ×N

}

=
−N
2
log(2πσ̂2) +Mlog|∆| − 1

2

{
M∑
i=1

log|G(β,∆,yi)| +N

}

=
−N
2

{
1 + log(2π) + log(σ̂2)

}
+Mlog|∆| − 1

2

M∑
i=1

log|G(β,∆,yi)|

(2.111)

Pinheiro and Bates (1995) noted that if the model function f is linear in the random ef-
fects, then the modified Laplacian approximation is exact because the Second-order Taylor
expansion in (2.101) is exact when

fi(β,bi) = fi(β) + Zi(β)bi (2.112)

They also noted that, there does not seem to be a straightforward generalization of the
concept of restricted maximum likelihood (REML) to NLME models since REML depends
heavily upon the linearity of the fixed effects in the model function, which does not occur in
nonlinear models.
Lindstrom and Bates (1990) overcame this problem by using an approximation to the model
function f in which the fixed effects,β, occur linearly.

Importance Sampling

Importance sampling provides simple and efficient way of performing Monte Carlo inte-
gration as discussed by Geweke (1989).
Critical step for the success of importance sampling is the choice of an importance distri-
bution from which the sample is drawn and the importance weights calculated.
Ideally this distribution corresponds to the density that we are trying to integrate though in
practice one uses an easily sampled approximation.
We saw earlier that from Pinheiro and Bates (1995), the integral that they estimated to
obtain the marginal distribution of yi in (2.85) could be written as (2.98). From our nonlinear
mixed-effects model the function that we want to integrate is, upto a multiplicative constant
equal to

exp[−g(β,∆,yi,bi)/2σ
2] (2.113)

as can be observed from (2.98).
As shown in (2.101), by taking a Second-order Taylor expansion of g(β,∆,yi,bi) around
b̂i the integrand is, up to a multiplicative constant, approximately N(b̂i, σ

2[G(β,∆,yi)]
−1)

density, which gives us a natural choice for the importance distribution.
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Lemma 8. The importance sampling approximation to the log likelihood of y from the above

distribution is

logLIS(β, σ2, ∆|y) = lIS(β, σ2, ∆|y)

=
−N

2
log(2πσ2) + Mlog|∆| − 1

2

M∑
i=1

log|G(β, ∆,yi)|

+
M∑
i=1

log

⎧⎨
⎩

NIS∑
j=1

exp(−g[β, ∆,yi,b∗
i ]/2σ2 +

∥∥z∗j ∥∥2 /2)

⎫⎬
⎭ /NIS

(2.114)

Proof. Letting NIS denote the number of importance samples to be drawn we can calculate

the sample of random effects. An example of such importance sample as given by Pin-

heiro and Bates (1995) can be generated by selecting a vector z∗ ∼ N(0, 1), that is, with

distribution N(0, 1).

From the distribution of the integrand, we can obtain the distribution of z∗ as

z∗ =
b∗

i − b̂i

(σ2[G(β,∆,yi)]−1)1/2
∼ N(0, 1) (2.115)

Hence from (2.115) we can obtain the sample of random effects as

b∗
i = b̂i + σ[G(β,∆,yi)]

−1/2z∗ (2.116)

where [G(β,∆,yi)]
−1/2 denotes the inverse of the Cholesky factor of G(β,∆,yi)

Thus the importance sampling approximation to the distribution becomes

f(y|β, σ2,∆) = LIS(β, σ2,∆|y)

=
|∆|M

(2πσ2)N/2

M∏
i=1

∫
σq|[G(β,∆,yi)]|−1/2 [exp−g[β,∆,yi,b

∗
i ]/2σ

2 × exp(−‖z∗‖2 /2)

(2πσ2)q/2
dz

=
|∆|M

(2πσ2)N/2

M∏
i=1

|[G(β,∆,yi)]|−1/2

∫
[exp−g[β,∆,yi,b

∗
i ]/2σ

2 × exp(−‖z‖2 /2)

(2π)q/2
dz∗

=
|∆|M

(2πσ2)N/2

M∏
i=1

|[G(β,∆,yi)]|−1/2

NIS∑
j1=1

, · · · ,
NIS∑
jq=1

exp
{
−g[β,∆,yi,b

∗
i ]/2σ

2 +
∥∥z∗j∥∥2 /2} /NIS

(2.117)

Hence the importance sampling approximation to the log-likelihood of y from the distribution
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above becomes

logLIS(β, σ2, ∆|y) = lIS(β, σ2, ∆|y)

=
−N

2
log(2πσ2) + Mlog|∆| − 1

2

M∑
i=1

log|G(β, ∆,yi)|

+
M∑
i=1

log

⎧⎨
⎩

NIS∑
j=1

exp(−g[β, ∆,yi,b∗
i ]/2σ2 +

∥∥z∗j ∥∥2 /2)

⎫⎬
⎭ /NIS

(2.118)

Adaptive Gaussian Quadrature

According to Pinheiro and Bates (1995), Gaussian quadrature rules are used to approximate
integrals of functions with respect to a given kernel by a weighted average of the integrand
evaluated at predetermined abscissas.
Weights and abscissas used in Gaussian quadrature rules, (GQ rules), for the most common
kernels can be obtained from the tables of Abramowitz and Stegun (1964) or by using an
algorithm proposed by Golub (1973) or Golub and Welsh (1969).
GQ rules for multiple integrals are known to be numerically complex as shown by Davis
and Rabinowitz (1984), but by using the structure of the integrand in the nonlinear mixed-
effect model by Pinheiro and Bates (1995), we can transform the problem into successive
applications of simple one-dimensional GQ rules.
Now considering Pinheiro and Bates (1995), single-level NLME model;
A natural candidate for the kernel function for the quadrature rule in the single-level NLME
model is the marginal distribution of the random effects, that is, the N(0, ψ) density.
The Gaussian quadrature rule in this case can be viewed as a deterministic version of a
Monte Carlo integration algorithm in which random samples of the random effects, bi, are
generated from the N(0, ψ) distribution.
The samples and weights in the GQ rule are fixed before hand while in Monte Carlo inte-
gration are left to random choice.
Importance sampling tends to be much more efficient than simple Monte Carlo integration
as shown by Geweke (1989). Now we consider an importance sample version of the GQ rule,
which was denoted by adaptive Gaussian quadrature
The critical step for the success of importance sampling is the choice of an importance
distribution that approximates the integrand.
For the single NLME model the integrand is proportional to

exp[−g(β,∆,yi,bi)/2σ
2] (2.119)

as can be observed from (2.98) which is approximated by a N(b̂i, σ
2[G(β,∆,yi)]

−1) density
with b̂i defined as

b̂i = b̂i(β,∆,yi)

= argmin
bi

g(β,∆,yi,bi)
(2.120)
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and G(β,∆,yi) defined as

g′′(β,∆,yi, b̂i) � G(β,∆,yi)

= f ′
i(β,bi)|bi=b̂i

f ′
i(β,bi)|bi=b̂i

+ ∆T ∆

=
∂fi(β,bi)

∂bi
|bi=b̂i

∂fi(β,bi)

∂bT
i

|bi=b̂i
+ ∆T ∆

(2.121)

as earlier defined in (2.106).

Lemma 9. The likelihood adaptive Gaussian Quadrature approximation is given by

LAGQ(β, σ2, ∆|y) =
|∆|M

(2πσ2)N/2

M∏
i=1

|[G(β, ∆,yi)]|−1/2

×
NGQ∑
j1=1

, · · · ,

NGQ∑
jq=1

exp
{
−g[β, ∆,yi, b̂i + σ(G(β, ∆,yi))−1/2zj]/2σ2 + ‖zj‖2

/2
} q∏

k=1

wjk

where

• zj, j = 1, · · · , NGQ denote the abscissas

• wj, j = 1, · · · , NGQ denote the weights

for the (one-dimensional) GQ rule with NGQ points based on the N(0, 1) kernel;

Proof. The integrand (2.119) is the importance distribution used in the adaptive GQ, so

that the grid of abscissas in the bi scale is centered around the conditional modes b̂i and

G(β,∆,yi) is used for scaling.

And from above we have

bi ∼ N(b̂i, σ
2[G(β,∆,yi)]

−1)

⇒ z =
bi − b̂i

(σ2[G(β,∆,yi)]−1)1/2
∼ N(0, 1)

⇒ bi = b̂i + σ[G(β,∆,yi)]
−1/2z

(2.122)

Thus from

bi = b̂i + σ[G(β,∆,yi)]
−1/2z

⇒ dbi = σq|[G(β,∆,yi)]
−1/2|dz

(2.123)
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Hence the adaptive Gaussian quadrature (AGQ) rule is given by∫
exp[−g(β,∆,yi,bi)/2σ

2]dbi =

∫
σq|[G(β,∆,yi)]|−1/2

× exp
{
−g[β,∆,yi, b̂i + σ(G(β,∆,yi))

−1/2z]/2σ2 + ‖z‖2 /2
}

× exp(−‖z‖2 /2)dz

� σq|[G(β,∆,yi)]|−1/2 ×
NGQ∑
j1=1

, · · · ,
NGQ∑
jq=1

× exp
{
−g[β,∆,yi, b̂i + σ(G(β,∆,yi))

−1/2zj]/2σ
2 + ‖zj‖2 /2

}

×
q∏

k=1

wjk

(2.124)

Combining previous work with (2.84) and (2.85) we can define the adaptive Gaussian Quadra-

ture as

LAGQ(β, σ2,∆|y) = f(y|β, σ2,∆)

=
M∏
i=1

f(yi|β, σ2,∆)

=

M∏
i=1

∫
f(yi|biβ, σ

2,∆).f(bi|β, σ2∆)dbi

=
M∏
i=1

∫
1

(2πσ2)ni/2
exp

{
−‖yi − fi(φi, ϑi)‖2

2σ2

}

× 1

(2π)q/2σqabs|∆|−1
exp

{
−‖∆bi‖2

2σ2

}
dbi

=

M∏
i=1

1

(2πσ2)ni/2

1

(2π)q/2σqabs|∆|−1

∫
exp

{
−‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2

2σ2

}
dbi

=

M∏
i=1

∫ |∆|
(2πσ2)ni/2

exp

{
−(‖yi − fi(φi, ϑi)‖2 + ‖∆bi‖2)/2σ2

(2πσ2)q/2

}
dbi

=
M∏
i=1

∫ |∆|
(2πσ2)ni/2

exp

{
−(‖yi − fi(β,bi)‖2 + ‖∆bi‖2)/2σ2

(2πσ2)q/2

}
dbi

(2.125)

Since we noted that

fi(β,bi) = fi(φi, ϑi)

= fi[φi(β,bi), ϑi]
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From (2.99) we can re-write (2.125) as

LAGQ(β, σ2,∆|y) =
M∏
i=1

|∆|
(2πσ2)ni/2

∫
exp

{−g(β,∆,yi,bi)/2σ
2

(2πσ2)q/2

}
dbi (2.126)

Incorporating (2.122), (2.123) together with (2.124) in (2.126), we end up getting

LAGQ(β, σ2, ∆|y) =
|∆|M

(2πσ2)N/2

M∏
i=1

∫
σq|[G(β, ∆,yi)]|−1/2

×
exp
{
−g[β, ∆,yi, b̂i + σ(G(β, ∆,yi))−1/2z]/2σ2 + ‖z‖2 /2

}
× exp(−‖z‖2 /2)

(2πσ2)q/2
dz

=
|∆|M

(2πσ2)N/2

M∏
i=1

|[G(β, ∆,yi)]|−1/2

×
∫ exp

{
−g[β, ∆,yi, b̂i + σ(G(β, ∆,yi))−1/2z]/2σ2 + ‖z‖2

/2
}
× exp(−‖z‖2

/2)

(2π)q/2
dz

=
|∆|M

(2πσ2)N/2

M∏
i=1

|[G(β, ∆,yi)]|−1/2

×
NGQ∑
j1=1

, · · · ,

NGQ∑
jq=1

exp
{
−g[β, ∆,yi, b̂i + σ(G(β, ∆,yi))−1/2zj]/2σ2 + ‖zj‖2

/2
} q∏

k=1

wjk

(2.127)

Thus the adaptive Gaussian approximation to the log-likelihood function in the single-level

NLME model is then

logLAGQ(β, σ2, ∆|y) = lAGQ(β, σ2, ∆|y)

=
−N

2
log(2πσ2) + Mlog|∆| − 1

2

M∑
i=1

log|G(β, ∆,yi)|

+
M∑
i=1

log

⎧⎨
⎩

NGQ∑
j=1

exp(−g[β, ∆,yi, b̂i + σ(G(β, ∆,yi))−1/2zj]/2σ2 + ‖zj‖2
/2)

q∏
k=1

wjk

⎫⎬
⎭

(2.128)

Lemma 10. The likelihood Gaussian Quadrature version of Monte Carlo integration is given

as

LGQ(β, σ2,∆|y) =
1

(2πσ2)N/2

M∏
i=1

NGQ∑
j1=1

, · · · ,
NGQ∑
jq=1

exp[−∥∥yi − fi(β, σabs|∆|−1z∗j1,··· ,jq)
∥∥2

]/(2σ2)

q∏
k=1

wjk

where z∗j1,··· ,jq = (z∗j1, · · · , z∗jq)T .
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Proof. Now viewing Gaussian Quadrature as a deterministic version of Monte Carlo integra-

tion in which random samples of bi are generated from the N(0, ψ) distribution and letting

z∗j and wj be as previously defined, that is,

• z∗j , j = 1, · · · , NGQ denote the abscissas

• wj, j = 1, · · · , NGQ denote the weights

for the one-dimensional GQ rule with NGQ points based on the N(0, 1) kernel; and from

(2.125) we get

f(y|β, σ2,∆) =
M∏
i=1

∫ |∆|
(2πσ2)ni/2

exp

{
−(‖yi − fi(β,bi)‖2 + ‖∆bi‖2)/2σ2

(2πσ2)q/2

}
dbi

=
|∆|M

(2πσ2)N/2

M∏
i=1

∫
exp−(‖yi − fi(β,bi)‖2)/(2σ2) exp−(‖∆bi‖2)/(2σ2)

(2πσ2)q/2
dbi

(2.129)

Since bi ∼ N(0, ψ), where ψ = σ2(∆T ∆)−1, then bi ∼ N(0, σ2(∆T ∆)−1)

z∗ =
bi − 0

[σ2(∆T ∆)−1]1/2
∼ N(0, 1), (as required)

⇒ bi = [σ2(∆T ∆)−1]1/2z∗

⇒ bi = σ × abs|∆|−1z∗

(2.130)

Applying change of variable technique,then from (2.130), we have

dbi = σq|∆|−1 dz∗ (2.131)
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Hence

LGQ(β, σ2,∆|y) =
|∆|M

(2πσ2)N/2

M∏
i=1

×
∫

exp−(‖yi − fi(β, σabs|∆|−1z∗)‖2
)/(2σ2) exp−(‖∆σabs|∆|−1z∗‖2

)/(2σ2)

(2πσ2)q/2

× σq|∆|−1 dz∗

=
|∆|M

(2πσ2)N/2

M∏
i=1

×
∫

exp−(‖yi − fi(β, σabs|∆|−1z∗)‖2
)/(2σ2) exp−(‖z∗‖2)/(2σ2)

(2πσ2)q/2
σq|∆|−1 dz∗

=
1

(2πσ2)N/2

M∏
i=1

×
∫

exp−(‖yi − fi(β, σabs|∆|−1z∗)‖2
)/(2σ2) exp−(‖z∗‖2)/(2σ2)

(2π)q/2
dz∗

=
1

(2πσ2)N/2

M∏
i=1

NGQ∑
j1=1

, · · · ,
NGQ∑
jq=1

exp[−∥∥yi − fi(β, σabs|∆|−1z∗j1,··· ,jq)
∥∥2

]/(2σ2)

q∏
k=1

wjk

(2.132)

where z∗j1,··· ,jq = (z∗j1, · · · , z∗jq)T .

Thus, the corresponding approximation to the log-likelihood function is

lGQ(β, σ2,∆|y) =
−N
2
log(2πσ2) +

M∑
i=1

log

⎧⎨
⎩

NGQ∑
j

exp[−∥∥yi − fi(β, σabs|∆|−1
∥∥2]/(2σ2)

q∏
k=1

wjk

⎫⎬
⎭

(2.133)

Having gone through the theory on determining these estimates, we find that, there is no
closed form solution for these estimates by maximum likelihood or restricted maximum
likelihood methods. Thus, they are determined by iterative algorithms such as EM iterations
or general nonlinear optimization which actually need a computer software. In our data
analysis to estimate these parameters we would use lme4 package in R statistical software.
Inference on the parameters of a LME model usually relies on approximate distributions for
the MLE and REML estimates derived from asymptotic results. Pinheiro (1994) showed that
under certain regularity conditions generally satisfied in practice, the maximum likelihood
estimates in the general LME model (2.1) are consistent and asymptotically normal.
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Chapter 3

Data Analysis

3.1 Introduction

Helminth (parasites that reside in an animal’s intestines) constitute one of the most impor-
tant constraints to small ruminant livestock production in the tropics resulting in widespread
infection in grazing animals, associated production losses, high costs of treatment and death.
Current control methods in the tropics focus on reducing contamination of pastures through
anthelmintic treatment of animals and/or controlled grazing. But there are problems with
increasing frequencies of drug resistance. An attractive, alternative and sustainable solution
is the breeding for disease resistance. Indeed, anecdotal evidence suggests that among the
large and diverse range of indigenous breeds of sheep and goats in the tropics there are some
that appear to have the genetic ability to resist or tolerate helminthiasis. One of these is the
Red Maasai breed found in East Africa and perceived to be resistant to the disease. The Red
Maasai is a fat-tailed sheep associated with the Maasai tribe found in northern Tanzania
and south-central Kenya.
ILRI decided in 1990 to investigate the degree of resistance exhibited by this Red Maasai
breed and initiated a study at Diani Estate of the Baobab Farms, 20 km south of Mombasa in
the sub-humid coastal region of Kenya. To do so, a susceptible breed, the Dorper, originally
from South Africa, was chosen to provide a direct comparison with the Red Maasai. The
Dorper breed was developed in South Africa in the 1940s by inter breeding the Dorset Horn
and Black Head Persian breeds. The Dorper is particularly well adapted to harsh, arid
conditions and was imported into Kenya in the 1960s. This breed is also larger than the Red
Maasai, and this makes these sheep attractive to farmers.
As well as comparing the performance of the different genotypes when exposed to helminthia-
sis, it is also of interest to examine genetic variation among rams and ewes within genotypes.
To do this we need to use what are known as restricted or residual maximum likelihood
(REML) procedures which are able to simultaneously estimate random and fixed effects.
Once the random estimates are known these can then be used to obtain heritability estimates
which determine the proportion of the variation among offspring that has been handed down
from parents.
Our major objective is examining incorporation of random effects to study variations among
rams (sires) and ewes (dams) and their influences on lamb weaning weight.
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We have only two breeds of ram and so it would not be sensible to infer that these two
breeds are a random sample from a much larger population of ram breeds. This is not only
because they were specifically chosen for this study, but also because a sample of two would
not be considered large enough to generalize to “all breeds”. Here the possibility of year
being random might also be considered. Six levels, as here, are probably about the minimum
number that could be considered as adequate for estimating random components. Thus, for
a study carried out over only three or four years, the sample would be hardly large or random
enough to be representative of a wider population of years.

3.2 Description of contents of the Data

The data set contains information on 882 lambs born and raised at Diani Farm on Kenya
coast between 1991 and 1996. Records for weaning weights are missing in 182 of the lambs,
mostly because of earlier death or because recording was missed. Missing data are indicated
by blanks. A! at the end of the variable name implies that the variable is being used as a
factor.
This data could be found in ILRI 2006, Biometrics and Research Methods Teaching Resource
Version 1 edited by John Rowland, Case Study 4.
The fields contained in the data are in Table 3.1

Table 3.1: Description of contents of the data
Field Description

LAMB Individual lamb identification

EWE-ID Identification of lamb’s dam

EWE-BRD Breed of ewe (D = Dorper and R = Red Maasai)

RAM-ID Identification of lamb’s sire

RAM-BRD Breed of ram (D = Dorper and R = Red Maasai)

BREED! Breed of the lamb (DD = pure bred Dorper,
DR = Dorper sire × Red Maasai dam,
RD = Red Maasai sire × Dorper ewe,

RR = pure bred Red Maasai)
YEAR! The year of birth of the lamb (1991-1996)
SEX! The sex of the lamb (M = male and F = female)

BIRTHWT Weight (kg) of lamb at birth
AGEWEAN Age (day) of lamb at weaning
DAMAGE! Age (year) of dam
WEANWT Weight (kg) of lamb at weaning
DAMAGE7! Calculated from DAMAGE in order to

represent DAMAGE in 7 categories
(≤ 2,3,4,5,6,7,≥ 8)

DL Duplicate of DAMAGE7 but considered
as a covariate, not a factor

DQ Calculated as DL*DL
DAMAGE4! Calculated from DAMAGE7 but collapsed

into four categories (≤ 2,3-4,5-6,≥ 7)
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3.3 Data Exploration

Sex of a lamb is an example of a fixed effect, can only have one of two values: male and
female.
Assumption made:
The sample of rams (or ewes) used in the study is a random selection of rams (or ewes) from
the particular genotype at large hence influence of the ram (or ewe) on the growth of its
offspring is now considered to be a random effect.
In mixed model analysis we have different types of units occurring at different layers namely
in this example: lambs, ewes, rams. The investigational or observational units defined within
layers are assumed to be chosen independently of one another; usually they are chosen at
‘random’. They will therefore be random effects in our mixed model.
We have two breeds. From within each of the two breeds a number of rams is selected. These
are the observational units (ram chosen as a random effect) against which the two breeds of
rams should be compared.
We do exactly the same for ewes.
Rams and ewes are mated both within and across breeds to produce their offspring. These
offsprings(lambs) are the investigational units at the next layer. Fixed effects or attributes
that might be considered for each lamb are: breed, age of ewe, ram breed × ewe breed, year
of birth, sex and age at weaning.
Before undertaking our statistical analysis it is useful to first explore the relationships be-
tween weaning weight and various covariates of interest to see how best these relationships
might be included in the statistical model.
The weight at weaning appears normally distributed, as indicated by the relative position of
the median within the box that contain half the data though there are some few ‘outliers’ as
shown in the Figure 3.1. A plot of weaning weight against ewe breed reveals that offsprings

5
10

15

Figure 3.1: A box plot of weight at weaning

from Dorper ewe breed are found to have high weaning weight than those from Red Maasai
ewe breed (see Figure 3.2) but rams from both the two breeds have almost an equal effect
on the offsprings’ weaning weight as Figure 3.3 shows. Figure 3.4 shows that sex of the lamb
affects the weaning weight slightly. Mean weaning weight of the male lambs is slightly higher
than that of female lambs. Mean weaning weight of lambs decreased gradually as the year
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Figure 3.2: Effect of ewe breed on the weight at weaning
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Figure 3.3: Effect of ram breed on the weight at weaning

of birth moved from 1991 to 1996 [see Figure 3.5]. The box plot by age of dam (DL)[see
Figure 3.6] illustrates the association between weaning weight and the age of a lamb’s dam.
There are more ‘outliers’ shown in this diagram. This is probably because the variation
among genotypes is not accounted for in this series of box plots. The plot shows that an
offspring’s weaning weight appears to increase as a dam increase in age from 2 to 5 years and
to decrease from 6 years onwards. We can fit DL as a factor with seven levels. Figure 3.7
demonstrates a linear relationship between age of lamb at weaning and the weaning weight.
Hence we can include the age at weaning as a continuous covariate in order to correct for its
effect on weaning weight.
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Figure 3.4: Effect of sex of lamb on the weight at weaning
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Figure 3.5: Effect of year of birth on the weight at weaning

3.4 Data Analysis by REML

3.4.1 Model selection

We now undertake a full mixed model analysis for lamb weaning weight with ram and ewe
defined as random effects for a combined model to investigate the influence of each of the
fixed effects on weaning weight.
We first fitted a generalized linear model to check the significance of each of our fixed effects,
that is: Year; Sex; Agewean; DL-linear term for dam age; DQ-quadratic term for dam age;
Ewe breed; and Ram breed.
An R - Output of our fit is given in the Appendix A.3.1. Calculated lower level (LL) and
upper level (UL) confidence intervals of our fixed effects were also given in Table 3.2.

• Response variable:WEANWT

• Fixed effects:YEAR,SEX,AGEWEAN,DL,DQ,EWE-BRD,RAM-BRD
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Figure 3.6: Effect of age of dam on the weight at weaning
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Figure 3.7: Effect of age of lamb at weaning on the weight at weaning

From the Table 3.2, we found

• Lambs born in the later years had lower weaning weights compared with those born in
the earlier years. All the years were very significant relative to 1991.

• Male lambs had an average weaning weight slightly higher by 0.48(±0.17)kg than
females. Male lambs were significant relatively to female lambs.

• The age at which weaning was done was very significant from the confidence interval
and the p-value.

• Age of ewe (DL and DQ) and the main effects (ewe breed and ram breed) were also
very significant.

DL and DQ are different representation of the effect of DAMAGE(age of dam) on
weaning weight. DL represents a linear fit while DQ represents a quadratic fit. The two
effects were highly significant. DAMAGE is divided into two categories: DAMAGE7-
with 7 (categories) levels, DAMAGE4-with 4 levels.
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Table 3.2: Table of Model giving significance of Fixed Effects
Estimate Std. Error 95% CI p-value

LL UL
YEAR 91 Reference

92 -1.57 0.29 -2.14 -0.99 < .001
93 -1.10 0.28 -1.64 -0.56 < .001
94 -2.83 0.36 -3.53 -2.13 < .001
95 -3.23 0.34 -3.90 -2.55 < .001
96 -2.35 0.39 -3.12 -1.59 < .001

SEX F Reference
M 0.48 0.17 0.15 0.81 0.005

AGEWEAN 0.07 0.01 0.05 0.09 < .001
DL 2.73 0.32 2.11 3.34 < .001
DQ -0.27 0.03 -0.34 -0.20 < .001
EWE BREED Dorper Reference

Red Maasai -0.59 0.24 -1.05 -0.12 0.014
RAM BREED Dorper

Red Maasai -0.44 0.17 -0.78 -0.10 0.011

A linear regression done before showed that reduced number of categories (DAMAGE4)
was not a good representation of the association with age as with 7 categories (DAM-
AGE7). A linear regression done of the comparison between DL, DQ and DAMAGE7
gave an insignificant variation showing the quadratic fit was a good one.

To introduce our random effects, we compared three linear mixed models,

1. Model 2: with ewe and ram as random components.

Yijk = µ+ yijk + sijk + Aijk + dj + d2
j + ej + ri + Ej +Ri + εijk (3.1)

where Yijk is the weaning weight of the k−th lamb born to the j−th dam and the i−th
ram, µ is the overall mean, yijk is the year of birth of the k−th lamb born to the j−th
dam and the i−th ram, sijk is the sex of the k−th lamb born to the j−th dam and
the i−th ram, Aijk is the age at weaning of the k−th lamb born to the j−th dam and
the i−th ram, dj and d2

j is the linear and quadratic representation of age of the j−th
dam respectively, ej and ri is the main effects of the j−th ewe breed and the i−th ram
breed respectively, Ej is the random effect of the j−th ewe, Ri is the random effect
due of the i− th ram and εijk is the random error of the k−th lamb born to the j−th
dam and the i−th ram.

It could as well be shortened to be in the form

Yijk = Xβ + Ej +Ri + εijk (3.2)

where Yijk is the weaning weight of the k−th lamb born to the j−th dam and the i−th
ram, X is incidence matrix for the fixed effects, β is vector of associated parameters,
Ej is the random effect due to the j−th ewe ,Ri is the random effect due to the i− th
ram and εijk is the random error of the k−th lamb born to the j−th dam and the i−th
ram.

2. Model 3: with ewe as a random component, where only Rk is removed in the above
model.
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3. Model 4: with ram as a random component, where only Ej is removed in the above
model.

In all the models the following assumptions on the random terms hold Ej are i.i.d N(0, σ2
e)

Rk are i.i.d N(0, σ2
r ) εijk are i.i.d N(0, σ2) and Ej , Rk and εijk are assumed to be independent.

The number of fixed effects in the three models were the same.
The first two models have all their log-likelihood, maximum-likelihood deviance and re-
stricted maximum-likelihood deviance equal, but differ in their Akaike Information Criterion
(AIC) and Bayesian or Schwarz Information Criterion (BIC). Thus we can choose model 3
with the smaller values of AIC and BIC.
These two comparison criteria could be evaluated as

AIC = −2l(θ̂|y) + 2npar (3.3)

and

BIC = −2l(θ̂|y) + 2nparlog(N) (3.4)

where npar denotes number of parameters in the model.
Though ram contributes genetically to the variation in the lambs slightly, we may chose
model 3 on the basis of law of parsimony and its low values of AIC and BIC. The table
below gives their log-likelihood and deviance.

Table 3.3: Model selection measures
Model AIC BIC logLik Ml deviance REMLdeviance

2 3110 3173 -1541 3053 3082
3 3108 3167 -1541 3053 3082
4 3146 3205 -1560 3092 3120

Our model 3 gives a linear mixed effect model fit by restricted maximum-likelihood for lamb
weaning weight with ewe as random effects.

Table 3.4: Table of Effects for the model relating
Estimate Std. Error 95% CI

LL UL
YEAR 91 Reference

92 -1.60 0.26 -2.11 -1.08
93 -1.09 0.26 -1.60 -0.59
94 -3.01 0.34 -3.67 -2.34
95 -3.30 0.34 -3.96 -2.64
96 -2.44 0.39 -3.20 -1.68

SEX F Reference
M 0.41 0.16 0.09 0.72

AGEWEAN 0.07 0.01 0.05 0.08
DL 2.92 0.30 2.34 3.50
DQ -0.29 0.03 -0.35 -0.23
EWE BREED Dorper Reference

Red Maasai -0.46 0.27 -0.99 0.06
RAM BREED Dorper

Red Maasai -0.42 0.16 -0.74 -0.10
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But our main objective was to examine incorporation of random effects to study variations
among rams (sires) and ewes (dams) and their influences on lamb weaning weight. Thus to
achieve our goal we must choose Model 2 since it contains both rams and ewes.
Comparison of the RAM-ID and EWE-ID variance components indicates that the variance
component for ewes (1.456488) is highly significant but that for ram (0.066577) is not.
With the random terms (ewes and rams) specified in the model the estimate of the residual
among lamb variance is reduced from 4.9 to 3.427208 kg.
This is due to taking into account the variations among rams and ewes within breeds.
With the ewe random term alone specified in the model,the estimate of the residual among
lamb variance is 3.4968kg.
This output is due to taking into account the variations among ewes within breeds reduced
from an approximate 4.9kg output assuming all variation to be at the lamb level.
Ewe variance component indicates the variance component for ewe (1.4459kg)is highly sig-
nificant.
The mixed model with the ewe component alone included utilizes almost an equivalent
information as the mixed model with both ewe and ram components included.
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Chapter 4

Conclusion

We had set out to review methods of estimating both linear mixed effects and nonlinear
mixed effects models, investigate the computational efficiency and accuracy of these and
other computational methods, like the b-splines, that could be used to approximate the
log-likelihood function in non-linear mixed effects models.
We have critically reviewed methods of estimating both linear mixed effects and nonlinear
mixed effects models.We have gone through the review of LME approximations, Laplacian
approximations, importance sampling and Gaussian quadratures in approximating the log-
likelihood. We also wanted to investigate the possibility of developing REML versions for
the last three approximation methods.
Computational and numeric methods of approximating the likelihood in nonlinear mixed ef-
fects models needs quite some longer time to be reviewed. Investigation of the computational
efficiency and accuracy of the b-splines, that could be used as an alternative to approximate
the log-likelihood function in non-linear mixed effects models was also not achieved in our
study. This could make quite an interesting area for some further research.
Mixed effects models constitute a powerful tool for modeling dependence within clustered
data. They give an intuitive interpretation for the source and the structure of the dependence
and can easily handle the unbalanced data that are frequently encountered in many areas of
scientific investigation.We have given a case study using R on a data set from livestock with
linear mixed-effects.
Despite their usefulness, mixed effects models remain a difficult area for many researchers
that could benefit from their application.
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Appendix A

The Appendix

A.1 Orthogonal Triangular Decomposition

Orthogonal Triangular Decomposition of rectangular matrices are a prefered numerical method
for solving least squares problems. Also called QR decomposition. The decomposition can
be written as

X = Q

[
R
0

]
(A.1)

In this case X is an n× p matrix (n ≥ p) of rank p, Q is a n× n and orthogonal matrix, R
is a p× p and upper triangular matrix and 0 is a (n− p)× p matrix of zeroes. The equation
in (A.1) can also be written as

X = QtR

where Qt (Q-truncated) consists of the first p columns of Q. It is important to note that Q
is orthogonal, that is

QTQ = QQT

= I

⇒ QT
t Qt = I

(A.2)

Orthogonal matrices preserve norms of vectors under multiplication either by Q or by QT .
The transformation represented by Q is a generalization of a rotation or a reflection in the
plane. We have ∥∥QTy

∥∥2 = (QT y)TQTy

= yTQQT y

= yTy

= ‖y‖2

(A.3)
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Applying this transformation to the residual vector in a least squares problem we get

‖y −Xβ‖2 =
∥∥QT (y −Xβ)

∥∥2
=
∥∥QTy −QTXβ

∥∥2
=

∥∥∥∥c−QTQ

[
R
0

]
β

∥∥∥∥
2

=

∥∥∥∥c−
[
R
0

]
β

∥∥∥∥
2

= ‖c1 − Rβ‖2 + ‖c2‖2

(A.4)

where

c = (cT1 c
T
2 )T

= QTy
(A.5)

is the rotated response vector in which case the components c1 and c2 are of lengths p and
n− p respectively. The least-squares solution β̂ is easily evaluated as the solution to

Rβ̂ = c1 (A.6)

and the residual sum of squares is ‖c2‖2 .

A.2 Definitions

A.2.1 Definition of a Cholesky Decomposition

Given a symmetric positive definite square matrix X, the Cholesky decomposition of X is
the factorization

X = UTU, (A.7)

where U is the square root of X and satisfies:

1.

UTU = X (A.8)

2. U is upper triangular (it has all 0’s below the major diagonal)

One can calculate the inverse of X more easily after computing U since

X−1 = U−1UT−1

, (A.9)

whereby inverses of U and UT are easier to compute.
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A.3 Data analysis

A.3.1 General Linear Modeling

Call:

lm(formula = WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. +

RAM_BRD., data = data4)

Residuals:

Min 1Q Median 3Q Max

-7.40371 -1.32744 -0.01093 1.44031 7.70632

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.274005 1.065133 0.257 0.79706

YEAR.92 -1.565831 0.292949 -5.345 1.23e-07 ***

YEAR.93 -1.095781 0.275268 -3.981 7.60e-05 ***

YEAR.94 -2.832501 0.357504 -7.923 9.34e-15 ***

YEAR.95 -3.228367 0.343630 -9.395 < 2e-16 ***

YEAR.96 -2.351101 0.389751 -6.032 2.64e-09 ***

SEX.M 0.477910 0.169498 2.820 0.00495 **

AGEWEAN 0.070217 0.008856 7.928 8.97e-15 ***

DL 2.726355 0.315012 8.655 < 2e-16 ***

DQ -0.268882 0.034007 -7.907 1.05e-14 ***

EWE_BRD.R -0.585536 0.236554 -2.475 0.01355 *

RAM_BRD.R -0.442866 0.172768 -2.563 0.01058 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 2.221 on 688 degrees of freedom

(182 observations deleted due to missingness)

Multiple R-Squared: 0.3835, Adjusted R-squared: 0.3736

F-statistic: 38.9 on 11 and 688 DF, p-value: < 2.2e-16

Analysis of Variance Table

Response: WEANWT

Df Sum Sq Mean Sq F value Pr(>F)

YEAR. 5 1208.1 241.6 48.9853 < 2.2e-16 ***
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SEX. 1 56.0 56.0 11.3494 0.0007968 ***

AGEWEAN 1 344.2 344.2 69.7804 3.651e-16 ***

DL 1 151.5 151.5 30.7160 4.258e-08 ***

DQ 1 275.8 275.8 55.9115 2.316e-13 ***

EWE_BRD. 1 42.7 42.7 8.6548 0.0033717 **

RAM_BRD. 1 32.4 32.4 6.5708 0.0105780 *

Residuals 688 3393.7 4.9

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

A.3.2 Mixed model

Linear mixed-effects model fit by REML

Formula: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. + (1 | EWE_ID.)

Data: data4

AIC BIC logLik MLdeviance REMLdeviance

3108 3167 -1541 3053 3082

Random effects:

Groups Name Variance Std.Dev.

EWE_ID. (Intercept) 1.4459 1.2025

Residual 3.4968 1.8700

Number of obs: 700, groups: EWE_ID., 358

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.218577 1.025299 0.213

YEAR.92 -1.595738 0.263857 -6.048

YEAR.93 -1.090956 0.257263 -4.241

YEAR.94 -3.006466 0.339047 -8.867

YEAR.95 -3.299145 0.337383 -9.779

YEAR.96 -2.439967 0.387341 -6.299

SEX.M 0.405743 0.162486 2.497

AGEWEAN 0.065870 0.008594 7.665

DL 2.921073 0.295619 9.881

DQ -0.290233 0.031904 -9.097

EWE_BRD.R -0.464975 0.266548 -1.744

RAM_BRD.R -0.420091 0.163578 -2.568

> anova(fit2,fit3)
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Data: data4

Models:

fit3: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. +

fit2: (1 | EWE_ID.)

fit3: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. +

fit2: (1 | RAM_ID.) + (1 | EWE_ID.)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fit3.p 13 3079.0 3138.1 -1526.5

fit2.p 14 3080.7 3144.4 -1526.4 0.24 1 0.6242

> anova(fit2,fit4)

Data: data4

Models:

fit4: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. +

fit2: (1 | RAM_ID.)

fit4: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. +

fit2: (1 | RAM_ID.) + (1 | EWE_ID.)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

fit4.p 13 3117.5 3176.7 -1545.8

fit2.p 14 3080.7 3144.4 -1526.4 38.814 1 4.661e-10 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Linear mixed-effects model fit by REML

Formula: WEANWT ~ YEAR. + SEX. + AGEWEAN + DL + DQ + EWE_BRD. + RAM_BRD. + (1 | RAM_ID.) + (1 | E

Data: data4

AIC BIC logLik MLdeviance REMLdeviance

3110 3173 -1541 3053 3082

Random effects:

Groups Name Variance Std.Dev.

EWE_ID. (Intercept) 1.456488 1.20685

RAM_ID. (Intercept) 0.066577 0.25803

Residual 3.427208 1.85127

Number of obs: 700, groups: EWE_ID., 358; RAM_ID., 74

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.185787 1.026340 0.181

YEAR.92 -1.570905 0.267785 -5.866

YEAR.93 -1.076631 0.264297 -4.074

66



YEAR.94 -3.002506 0.344568 -8.714

YEAR.95 -3.288317 0.345214 -9.525

YEAR.96 -2.450082 0.394632 -6.209

SEX.M 0.403811 0.162311 2.488

AGEWEAN 0.065929 0.008613 7.655

DL 2.922318 0.294546 9.921

DQ -0.289973 0.031784 -9.123

EWE_BRD.R -0.454294 0.266448 -1.705

RAM_BRD.R -0.413038 0.175535 -2.353

67


