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ABSTRACT 

The influence of soil fertility management technologies on crop production has widely 

been researched in Tharaka-Nithi County. However, data on their contribution towards 

national greenhouse gas budget is scanty. This study aimed at characterising smallholder 

farming systems and simulating greenhouse gas emissions, maize yields, yield scaled 

nitrous oxide (N2O) emissions and N2O emission factors from different soil fertility 

management technologies in Tharaka-Nithi County. Three hundred households were 

interviewed to obtain data for farming systems characterisation and evaluation of socio-

economic factors influencing the diversity of farm typologies. Interview schedules were 

administered using open data kit collect mobile App. Multivariate analysis was done to 

characterise smallholder farming systems. To evaluate socio-economic factors 

influencing farm diversity, Chi-square, t-test, and multinomial regression analysis were 

carried out using the Statistical Package for Social Sciences (SPSS version 23). For 

calibration and validation of the DeNitrification DeComposition (DNDC) model, a one-

year soil greenhouse gas quantification experiment data were used. The data were 

obtained from a field experiment conducted in Kigogo primary school. It was laid out in 

randomised complete block design under four soil fertility treatments as control (no 

external inputs), inorganic fertiliser (NP, 23.23, 120 kg N ha
-1

 yr
-1

), animal manure (goat 

manure, 120 kg N ha
-1

 yr
-1

) and animal manure + inorganic fertiliser (120 kg N ha
-1

 yr
-1

) 

replicated thrice. Climate, soil properties, N2O fluxes, maize yields and farm 

management data were used. The model was evaluated using modelling efficiency, mean 

error, coefficient of determination, mean absolute error, and root mean square error 

(RMSE). The experimental data were subjected to Analysis of Variance in SAS 9.4 

software and mean separation done using least significance difference at p = 0.05. The 

results showed six farm types: Type 1, comprising cash crop and hybrid cattle farmers; 

Type 2, involving food crop farmers; Type 3, composed of coffee-maize farmers; Type 4, 

consisting of millet-livestock farmers; Type 5, comprising highly diversified farmers, and 

Type 6, had tobacco farmers. Land size, total tropical livestock unit, the proportion of 

land and amount of nitrogen applied to different cropping systems were significant in the 

construction of farm typologies. The DNDC model was fair in simulating daily N2O 

fluxes (54% ≤ normalized RMSE (nRMSE) ≤ 68% and 0.26 ≤ modelling efficiency 

(MEi) ≤ 0.49) and good to excellent performance in simulating cumulative annual soil 

N2O fluxes (6.16 ≤ nRMSE ≤ 12.86 and 0.63 ≤ MEi ≤ 0.86) across soil fertility 

treatments. The cumulative observed and simulated annual soil N2O fluxes ranged 

between 0.21±0.01 and 0.38±0.02 kg N2O-N ha
-1 

yr
-1

 and 0.20 kg N2O-N ha
-1 

yr
-1

 

(control) to 0.38 (fertiliser) kg N2O-N ha
-1 

yr
-1

. The simulated N2O yield scaled 

emissions, and emission factors ranged from 0.022 to 0.029 g N Kg 
-1

 grain yield and 

0.03 % to 0.14% under manure and fertiliser treatments, respectively. Based on the low 

observed and simulated emission factors, using the Intergovernmental Panel on Climate 

Change (IPCC) Tier 1 default factor of 1% overestimates agricultural soils GHG 

emissions in the Central Highlands of Kenya. Manure and fertiliser combination should 

be promoted to enhance the three pillars of climate-smart-agriculture (CSA) as food 

security, climate change mitigation and adaptation. 



 

1 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Study  

The role of smallholder farming systems towards food security is indisputable at the 

global level (Guiomar et al., 2018). These farming systems produce approximately 80% 

of the global food FAO (2014) and are vital in meeting dietary demand for the rural poor 

(Herrero et al., 2014). Smallholder farming systems face numerous challenges, including 

continuous population growth, climate change, declining soil fertility, land degradation 

and reduced land sizes (Chen et al., 2018b). To meet dietary demands for the increasing 

population, smallholder farming systems have diversified and intensified on agricultural 

production (Ha, 2011; Chen et al., 2018a). Over the last fifty years, sub-Saharan Africa 

(SSA) smallholder farming systems have played a vital role in feeding the ever-growing 

population (Moyo, 2016).  

 

Despite the novel gain in grain production from smallholder farming systems in SSA, the 

agricultural sector remains flawed with a myriad of problems including technological 

shifts and unpredictable rains (IFAD, 2013; Myeni et al., 2019). Further, agricultural 

productivity in SSA is constrained by limited institutional support, low public 

investment, dependence on rain-fed agriculture, under-irrigation and gender disparities 

thus hampering climate change adaptation (Shimeles et al., 2018). Rain-fed agriculture is 

predominant in the Central Highlands of Kenya and Kenya at large, contributing 

approximately 80% of agricultural production and are vulnerable to climate change 

(Stefanović, 2015). Various agricultural intensification technologies have been developed 

in Tharaka-Nithi County to increase agricultural productivity (Ngetich et al., 2014a; 

Kiboi et al., 2017; Kiboi et al., 2019). Agricultural intensification and diversification can 

increase heterogeneity of smallholder farming systems and greenhouse gas (GHG) 

emissions which are key drivers towards climatic variability (Ortiz-Gonzalo et al., 2018; 

Macharia et al., 2020).  
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The diversity of the smallholder farming systems constrains the implementation of 

governments‘ policies, interventions and mitigation measures directed towards enhancing 

agricultural and environmental sustainability (Daloǧlu et al., 2014; Goswami et al., 2014) 

including GHG emissions quantification, accounting and reporting. To appropriately 

address the menace of low agricultural productivity, technological interventions should 

be designed to fit dynamic and spatially heterogeneous smallholder farming systems 

(Tittonell et al., 2010). Typologies remain vital in guiding intervention measures directed 

to increase agricultural productivity and climate change adaptation (Tittonell et al., 

2020). Various socio-economic factors have been documented to influence farm 

typologies in SSA for instance population densities, farm size, production objectives and 

resources endowment (Sakané et al., 2013; Kansiime et al., 2018). Farming systems have 

been characterised to guide policymakers in recommending resilient agronomic 

management practices in Kenya (Tittonell et al., 2010; Kamau et al., 2018) and mapping 

spatial variability of farming systems (Van de Steeg et al., 2010).  

 

Soil fertility depletion has been widening yield gaps in SSA (Sanchez, 2002), and in 

particular the central highlands of Kenya (CHK) (Mugwe et al., 2009; Mucheru-Muna et 

al., 2014; Kiboi et al., 2017). Assorted soil nutrient management technologies have been 

developed, tested and reported to improve soil fertility, crop yields, and overall soil 

health (Mucheru-Muna et al., 2014; Kiboi et al., 2020). Further, the adoption of these 

technologies have been assessed (Mugwe et al., 2009) and found to have a high cost-

benefit ratio. Smallholder farmers are knowledgeable about the use of manure and 

inorganic fertiliser, but few farmers implement manure and inorganic fertiliser 

combination (Macharia et al., 2014). Given the wide diversity of these soil fertility 

management technologies and their varying levels of intensification in smallholder 

farming systems, GHG emissions quantification, simulation, and mitigation are 

complicated. For instance, despite the novel gains in the adoption of integrated soil 

fertility management (ISFM), an agricultural production intensification mechanism 

(Ngetich et al., 2012; Mucheru-Muna et al., 2014; Vanlauwe et al., 2015), its 

contribution to GHG emissions amounts might be significant (FAO, 2014). 
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Agriculture contributes approximately 14-17% of the global anthropogenic GHG 

emissions (Vermeulen et al., 2012; Ciais et al., 2013). Fermentation and anaerobic 

decomposition of organic matter emit methane (CH4), nitrification and denitrification of 

manure and nitrogenous fertiliser produce nitrous oxide (N2O) while organic matter 

decomposition and microbial respiration emit carbon dioxide (CO2) (Smith et al., 2008; 

Butterbach-Bahl et al., 2016). Nitrogen application increase agricultural productivity and 

GHG emissions (Hickman et al., 2014; Tongwane et al., 2016). Knowledge of 

agricultural soil GHG emissions is essential for national and regional GHG inventories. 

However, limited empirical data have been documented on GHG emissions under 

smallholder farming systems (Rosenstock et al., 2016; Pelster et al., 2017). Direct 

measurement of GHG emissions for national and regional inventories is not practical as it 

requires data to be collected over a large area and extended period (Giltrap et al., 2010). 

Therefore, developing countries use the default IPCC default Tier 1 emission factors 

which tends to overestimates the GHG emissions resulting to poor targeting of mitigation 

and adaptation strategies (Richards et al., 2016; Pelster et al., 2017; Macharia et al., 

2020).  

 

Therefore, there is a need to explore the utilisation of cheaper and available means such 

as the use of biogeochemical models for GHG emissions quantifications for national 

GHG inventories. The biogeochemical models could simulate soil GHG emissions 

accurately, at a large spatial scale and a lower cost compared with experimentation 

(Giltrap et al., 2010). A good example of such a model is the DeNitrification 

DeComposition (DNDC) developed by Li et al. (1992) for the simulation of N2O 

emission from agricultural soils in the US. Since its development, it has been modified 

and used in various parts of the world to simulate N2O, CO2 and CH4 emissions (Deng et 

al., 2011; Zhang & Niu, 2016). 

 

1.2 Statement of the Problem 

Smallholder farming systems in Tharaka-Nithi County are faced with soil fertility 

decline, water stress, and declining agricultural production (Ngetich et al., 2014a; Kiboi 

et al., 2019). To curb these vagaries, there have been concerted efforts to intensify and 
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diversify the smallholder farming systems, thus, increasing application of external inputs 

their heterogeneity. This leads to increased atmospheric GHG emissions and their effects 

on climate variability and change that negatively affects agricultural productivity. To 

understand the contribution of different farming systems towards GHG emissions, there 

is a need to characterise smallholder farming systems based on soil external inputs such 

as inorganic and organic fertilisers and livestock enterprises in the farm. Assorted soil 

fertility management technologies have been developed, tested and reported to improve 

crop yields in Tharaka-Nithi County (Mucheru-Muna et al., 2014; Ngetich et al., 2014a; 

Kiboi et al., 2017; Kiboi et al., 2019). However, there is a huge data gap in the 

documentation of their individual contributions to GHG fluxes. Direct quantification of 

GHG emissions for national inventories is impractical and expensive as it would require 

many measurements to be made over large areas and for a long period compared to 

simulation. Biogeochemical models, including Denitrification Decomposition (DNDC), 

have been found to simulate crop yields and GHG emissions elsewhere accurately. Hence 

there is a need to test their applicability in simulating maize yield and N2O emissions 

under different soil fertility management technologies in the Tharaka-Nithi County. 

 

1.3 Justification  

To attain sustainable agricultural production in Tharaka-Nithi County, there is a need to 

characterise existing farming systems and quantify GHG emissions under different soil 

fertility management technologies. Grouping smallholder farming systems to coherent 

farm types (smallholder farming systems typologies) has the potential to guide 

agricultural policies, interventions and mitigation measures implementation. This can 

also lead to the identification of GHG emissions hotspots that can inform their 

quantification and simulation. Simulating maize yields and GHG emissions from 

different soil fertility management technologies provides an insight on which technology 

increases crop yields with minimal increase or decrease in GHG emissions. Further, the 

model simulates soil GHG emissions in a cheaply providing an alternative to direct 

quantification in informing nationally determined contributions.  
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1.4 Research Questions 

(i) What are the key characteristics of smallholder farming systems in Tharaka-

Nithi County? 

(ii) How do socioeconomic factors influence the diversity of smallholder farm 

typologies in Tharaka-Nithi County? 

(iii) How well does the DeNitrification-DeComposition model simulate GHG? 

(iv)  How well does the DeNitrification-DeComposition model simulate maize 

production (yield and biomass), N2O yield-scaled emissions and emission 

factors? 

 

1.5 Research Objectives 

1.5.1 Broad Objective 

To characterise smallholder farming systems and simulate greenhouses gas fluxes from 

selected soil fertility technologies in Tharaka-Nithi County, Kenya. 

 

1.5.2 Specific Objectives 

(i) To characterise smallholder farming systems in Tharaka-Nithi County. 

(ii) To evaluate socioeconomic factors influencing the diversity of smallholder farm 

typologies in Tharaka-Nithi County. 

(iii)To calibrate, validate and evaluate the accuracy of the DeNitrification-

DeComposition model in the quantification of greenhouse gas emissions in 

Tharaka-Nithi County. 

(iv) To simulate maize production (yield and biomass), N2O yield-scaled emissions 

and emission factors from maize cropping systems in Tharaka-Nithi County using 

DeNitrification-DeComposition model. 

 

1.6 Conceptual Framework  

Farming systems diversification and intensification leads to higher usage of external 

inputs in Tharaka-Nithi County. These increase GHG emissions leading to climate 

variability. Further, poor farming practices cause a decline in soil fertility. Reduced soil 



 

6 

 

fertility and allied negative climate variability result in reduced agricultural production. 

Farming systems characterisation (Objectives 1 and 2) and GHG emissions simulation 

(Objectives 3 and 4) can be used to reverse this problem by promoting appropriate use of 

external inputs with the highest productivity but least GHG emissions. The interactions of 

these processes are as shown in (Figure 1.1). 
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Figure 1.1 Conceptual framework 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

This chapter reviews the current state of knowledge and contribution of past studies on 

the researched subject matter. The thematic areas reviewed are farming systems 

characterisation, socio-economic factors influencing the diversity of farm typologies, 

GHG fluxes, the DNDC model calibration and validation. 

 

2.2 Farming Systems Characterisation 

There are about 570 million small farms worldwide Lowder et al. (2016), these farms are 

fundamental in meeting the global food demand (Guiomar et al., 2018; Lopez-ridaura et 

al., 2018). Smallholder farms produce approximately 80 per cent of the food consumed in 

SSA (IFAD, 2013), that heavily depend on family labour (Rapsomanikis, 2015). Despite 

the ability of smallholder farming systems to feed the bulk of world‘s population, they 

are constrained by numerous challenges encompassing limited governments‘ support, 

over-dependency on rain-fed agriculture, soil fertility decline, population pressure, land 

fragmentation, market shifts and climate change (Dillard, 2019; Martin-Shields & 

Stojetz, 2019). Climate discrepancy from the normal trends leads to severe cut of grain 

yields (Vogel et al., 2019). Agricultural interventions to increase food production are at 

risk as they might contribute significantly to GHG emissions (Tongwane et al., 2016). 

 

Smallholder farming systems are fundamental in promoting rural development, poverty 

alleviation and sustainable development in SSA (Moyo, 2015; Suttie & Benfica, 2016). 

These farms account for approximately 78% of food products consumed in Kenya and 

Tharaka-Nithi County (Word Bank, 2015) and are constantly affected by climate change 

and water stress (Vanlauwe et al., 2015; Kiboi et al., 2017; Kiboi et al., 2019; Mugwe et 

al., 2019). Land and population pressure, limited government spending on agriculture, 

low access to extension services, limited credit assess, climate change, soil fertility 

decline and land degradation have been documented as a major hindrance to achieving 
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food security in Kenya (Birch, 2018). Technological interventions to improve agricultural 

productivity and climate change mitigation are limited by both spatial and temporal 

diversity exhibited by smallholder farming systems (Haileslassie et al., 2016; Guiomar et 

al., 2018). Smallholder farming systems are diverse, and no single intervention measure 

fits all, each farm should receive a different intervention and is practical at a large scale 

level (Alvarez et al., 2014). Due to their dynamism, farm typologies creation technique 

gains relevancy in addressing challenges facing these farms (Tittonell et al., 2010). 

 

Smallholder farm typologies can be created based on structural or functional data variable 

that describes households assets or livelihood strategies, respectively (Alvarez et al., 

2014; Lacoste et al., 2018; Tittonell et al., 2020). Variables involved in creating 

smallholder farm typologies are objectives based and yields typologies geared towards 

addressing the specific research problem, for example, Tittonell et al. (2020) were on 

drought risks, Kamau et al. (2018) were on organic farming, and Foguesatto et al. (2019) 

were on climate change. Characterising farming systems simplifies their diversity hence 

permitting policy formulation and establishment of area-specific interventions measures 

(Chatterjee et al., 2015). Developing farm typologies guide farmers to adopt intervention 

mechanisms which are well suited to their challenges (Daloǧlu et al., 2014). These farm 

types are useful in designing intervention measures which are consistent with 

households‘ environmental, socio-economic climatic and agronomic challenges (Meylan 

et al., 2013; Haileslassie et al., 2016) thus informing best-fitted models for addressing 

specific problems. Further, farm typologies can guide policies implementation aimed at 

improving agricultural productivity, mitigating climate change and quantifying 

agricultural GHG emissions (Gelasakis et al., 2012; Guiomar et al., 2018). 

 

Multivariate analysis, expert knowledge, participatory ranking and step by step 

comparison of farm functioning are the main methods used in categorising smallholder 

farming systems (Alvarez et al., 2014). Step by step comparison of farm functioning 

categorised farming systems based on household structure and then farmers strategies and 

orientation were identified (Capillon, 1993). This method is data-intensive as it needs a 

lot of data to be collected using a survey method from a stratified sample. Expert 
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knowledge typologies construction techniques use farm clusters identified by farmers, 

local experts or key informants (Paccin et al., 2013) thus can be implemented over a 

shorter time. Participatory ranking techniques involve classification of households based 

on observable assets by knowledge experts (Knierim et al., 2019). Finally, the 

multivariate analysis uses statistical data analysis techniques including principal 

component analysis (PCA) and clustering analysis (CA) commonly referred as 

‗dimensional data reduction (Alvarez et al., 2018; Kamau et al., 2018). The multivariate 

technique is widely preferred over the three because of its reproducibility because of its 

integral statistical procedure (Paccin et al., 2013; Kamau et al., 2018). Since multivariate 

analysis is dominant in creating farm typologies, its applicability in farming systems 

typologies to guide GHG emissions quantification, simulation, and mitigation is 

accentuated. 

 

2.3 Socio-economic Factors Influencing Farm Typologies 

Smallholder farming systems are socially dissimilar and spatially heterogeneous (Tittonel 

et al., 2010). Due to their dynamism, farm typologies become out-dated with time and 

need regular modernisation. Several household variables such as assets, livelihood 

strategies, farm management, socio-economics, biophysical and economic resource, farm 

performance, farm inputs and dietary access have been used to construct farm typologies 

(Paccin et al., 2013; Sakané et al., 2013; Kansiime et al., 2018). Variables involved in 

farm typologies construction are chosen, objective-based and differs among studies 

(Tittonell et al., 2010; Alvarez et al., 2014; Alvarez et al., 2018; Tittonell et al., 2020). 

Therefore, the influence of socio-economic variables should be evaluated across farm 

typologies.  

 

For intervention measures aimed at enhancing food security and GHG emissions 

mitigation to be accepted by society, they should match with societal socio-economic 

status (Chatterjee et al., 2015). Socio-economic factors influence farmers‘ acceptance of 

any intervention measure example (Jena et al., 2012; Ntshangase et al., 2018). 

Subsequently, developing farm typologies guides researchers, policymakers and 

extensions officers on farmers‘ best well-matched intervention mechanisms (Daloǧlu et 



 

10 

 

al., 2014). Since most of the typologies are constructed using variables that have an 

immediate influence on the research theme, for example, Tittonell et al. (2010) were on 

soil fertility, Makate et al. (2018) was on climate-smart agriculture, and Aravindakshan et 

al. (2020) were on agrarian change, there is need to integrate them with households‘ 

socio-economic context to enhance their acceptability.  

 

Smallholder farm typologies become obsolete with time because socio-economic 

eminences controlling them are vibrant (Alvarez et al., 2014). The constructed typologies 

represent an abstract of farming systems at that time. Therefore, a clear context of when 

the data used in typologies construction was collected is essential in predicting the 

appropriateness of some study variables (Giller et al., 2011). Data collection for several 

years example, land use land change can be used to create farmers‘ decision tree, and 

expert opinion can guide in projecting long term variations (Kuivanen et al., 2016a). 

Assessing socio-economic factors influencing the diversity of farm typologies provide a 

basis for monitoring advancements achieved through specified intervention measures.  

 

2.4 Soil Greenhouse Gas Fluxes 

Agriculture is the primary land use in SSA and East Africa producing a significant 

amount of GHG emissions; however, limited GHG quantification research has been 

implemented in the region (Rosenstock et al., 2016; Ortiz-Gonzalo et al., 2018). Soil 

management practices such as manure management, nitrogen application, tillage, 

mulching influence soil GHG emissions (Ogle et al., 2014; Skinner et al., 2014; Togwane 

et al., 2016). These soil management practices aimed at increasing agricultural 

productivity manipulates soil environment (soil substrate concentration, structure, cover) 

thus stimulating microbial activities accountable for tracer gas emissions (Powlson et al., 

2011; Thomson et al., 2012). Agricultural soil acts as a source of CO2; however, it can 

also be both source and sink of CH4 and N2O (Smith et al., 2008). Agricultural 

ecosystems produce approximately 60% of the total global anthropogenic N2O emissions 

(IPCC, 2014). Microbial nitrification and denitrification process is responsible for N2O 

emissions from the soil (Butterbach-Bahl et al., 2013).  
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Soil GHG fluxes are driven by soil biogeochemistry process (Butterbach-Bahl et al., 

2016), which are catalysed by the interaction between climate, environment and soil 

management practices such as the addition of nitrogen and carbon to soil (Abdalla et al., 

2009). Further, atmospheric temperature, precipitation, solar radiation, and relative 

humidity sways soil GHG fluxes (Zona et al., 2013; Gilhespy et al., 2014). Soil 

properties such as bulk density, moisture, pH, temperature, clay fraction and C to N ratio 

affects soil GHG fluxes (Powlson et al., 2011; Wiesmeier et al., 2013). Since soil GHG 

fluxes are highly controlled by carbon and nitrogen dynamics, effective management of 

carbon and nitrogen entry into agricultural land can mitigate GHG fluxes (Smith et al., 

2008).  

 

Strategies directed towards increasing global food production upsurge GHG emissions 

not unless appropriate mitigation measures are introduced (Majiwa et al., 2018). This 

mandates development of soil fertility management technologies responsible for 

improving agricultural productivity with minimal increase or reduction in agricultural 

GHG emissions (Agovino et al., 2019). Since various ISFM technologies for example 

(manure, fertiliser, fertiliser + manure) have been developed, tested and showed to be 

economically plausible in improving food output (Vanlauwe et al., 2015; Kiboi et al., 

2019), there is need to document the contribution of such technologies to GHG 

emissions. This can guide in identifying the ISFM technologies that are economically 

proficient and environmentally sustainable. 

 

Most developing countries use the Inter-Governmental Panel on Climate Change (IPCC) 

Tier 1 emission factor (EF) of 1% to report their agricultural contribution towards GHG 

emissions (Tubiello et al., 2013). These EFs were based on few studies and can either 

overestimate or underestimate agricultural soil GHG emission in different regions 

(Hickman et al., 2014). Therefore, the need for countries‘ specific emissions factors for 

accurate soil GHG emissions reporting, accounting and mitigation. 

 

Nitrous oxide is a powerful ozone layer (O3) depleting agent, a global warming potential 

of 298 times higher than that of carbon dioxide and over 150 years‘ time horizon (Shang 
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et al., 2011). Numerous studies have assessed the influence of agricultural management 

on soil N2O fluxes (Rosenstock et al., 2016; Pelster et al., 2017). The data documented 

on soil N2O fluxes emitted is inadequate as it compares only emissions amounts among 

technologies. Therefore, the need for an integrated approach including yields-scaled N2O 

emission (YSE) that provide the quantities emitted per unit of production (Pelster et al., 

2017; Chen et al., 2019). The YSE provides a basis for comparing N2O fluxes per grain 

productivity which is more informative as it combines food production and GHG 

emissions. 

 

2.5 Nitrous Oxide and Maize Yields Modelling 

Quantification of soil greenhouse gas emissions under different soil fertility management 

technologies is essential in choosing the best technology that improves crop yields while 

lowering or with an insignificant increase in the fluxes. However, direct quantification of 

the soil N2O fluxes is impractical and expensive under national and regional scale 

(Giltrap et al., 2010). Therefore, process-based biogeochemical models may offer an 

alternative by simulating greenhouse gas emissions and maize yields from agricultural 

systems as influenced by different soil fertility management technologies. One of the 

commonly used biogeochemical models in simulating soil N2O fluxes and maize yields is 

the DNDC model. The DNDC model was initially developed to simulate soil tracer 

emissions following rainfall event in the USA (Li et al., 1992; Li et al., 2010). Previous 

studies indicated the DNDC model performance in well in simulating soil N2O fluxes, 

and maize yields elsewhere were acceptable (Cui et al., 2014; Uzoma et al., 2015). 

However, there is still limited information on the model performance in Kenya and SSA 

at large. Cognisant of the applicability of the DNDC model in simulating soil N2O fluxes 

and maize yields elsewhere, there is a need for its calibration and validation in simulating 

maize yields and soil N2O fluxes under different soil fertility management practices in 

Kenyan soils. 

 

2.6 The DeNitrification DeComposition (DNDC) Model  

The DNDC is a process-based biogeochemistry model developed by Li et al. (1992) to 

simulate C and N turnover in agricultural ecosystems. The DNDC model can predict crop 
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yield, soil environmental factors, C sequestration and C and N trace gas fluxes. The 

model has six sub-models; soil climate, crop growth, decomposition, nitrification, 

denitrification and fermentation sub-models and can simulates trace gases (NO, N2O, 

CH4 and NH3) fluxes, soil moisture, pH, temperature and substrate concentrations. A 

review conducted by Gilhespy et al. (2014), revealed that the DNDC model is widely 

used to simulate GHG emissions because its features are responsible for extensive uses  

 

The latest DNDC model version (9.5) (http://www.dndc.sr.unh.edu/) can be implemented 

at both site and regional scale (Li et al., 1992, Li et al., 2017). Soil properties, climatic 

condition, vegetation and farm management are the main input parameters for DNDC 

modelling. The climate input parameters include daily weather (relative humidity, solar 

radiation, maximum and minimum temperature, wind speed, and precipitation). The soil 

properties used in DNDC modelling include field capacity, texture, pH, clay fraction bulk 

density, C: N ratio, wilting point and initial SOC. Additionally, crop type, planting date, 

harvesting date, biomass components (grain, root, leaf and stem) and all farm agronomic 

managements ranging from the nitrogen application date, times and depth are used as 

DNDC input parameters (Gilhespy et al., 2014; Li et al., 2017). 

 

Various studies have used the DNDC model to predict crop production, trace gas 

emissions, soil temperature, moisture, and Nitrogen (Uzoma et al., 2015; Zhang & Niu, 

2016; Li et al., 2017). Based on evaluations matrices used in different studies Abdalla et 

al. (2011), Wang et al., 2011 and Deng et al. (2016), the DNDC model performed well in 

predicting soil GHG emissions. According to Rafique et al. (2011), the DNDC model 

predicted annual and seasonal GHG fluxes well but failed to capture negative soil N2O 

fluxes. Failure to predict the soil N2O uptake could result in overestimation. Therefore, 

the carbon and nitrogen ratio can be lowered during the calibration process to enable the 

model to capture both peaks and nadirs (Rafique et al., 2011).  

 

The DNDC model has widely been used over the last two decades to inform implication 

of management practices on agriculture and climate change (Giltrap et al., 2010, Rafique 

et al., 2011; Deng et al., 2016; Li et al., 2017; Cui & Wang, 2019). Since Li et al. (1992) 

http://www.dndc.sr.unh.edu/


 

14 

 

version 1.0 - 7.0, the model has been modified and updated to fit specific research 

situation to the current DNDC model version 9.5 (Gilhespy et al., 2014). Further, various 

models such as online, manure, wetland, crop, forest, landscape, UK and Europe DNDC 

have been developed to fit different agro-ecosystems (Giltrap et al., 2010).  

 

The model is comparatively easy to use as it has an attractive graphical user interface that 

has enhanced its widespread use across the globe (Gilhespy et al., 2014). The DNDC 

model has various user-defined default parameters making it comprehensive and able to 

give diversified outputs for evaluation. Since the DNDC model is user friendly, it can be 

used by many inexperienced modellers. The DNDC model manual focuses on step by 

step application rather than technical mechanisms surrounding the inputs and outputs.  

 

2.7 The Model Calibration and Validation  

The DNDC model is calibrated by fitting the measured and user-defined local conditions 

(parameterisation) to simulate the underlying biogeochemistry processes (Ruser et al., 

2017). The DNDC model is calibrated by inputting measured and default values (Chen et 

al., 2018b). The model is then run with the in-situ and default parameters to yield default 

mode (DEM) output (Rafique et al., 2011; Zhao et al., 2015). The input parameters that 

are responsible in simulating underlying processes in GHG emissions and crop yields 

such as soil moisture, bulk density, clay fraction, field capacity, pH, bulk density and C to 

N ratio are adjusted to give optimized range of parameters (Giltrap et al., 2010; Li et al., 

2017). Finally, the model is then run with an optimised range of parameters to yield 

calibration mode (CAM) outputs (Grant et al., 2015).  

 

The model is validated by comparing simulated with experimental data to ensure the 

model predicts underlying biogeochemical processes (Giltrap et al., 2010). Validation is a 

confirmatory step in DNDC modelling that ascertains that the simulated and observed 

values are in agreement. During the validation stage, the model is run with input 

parameters from different treatments or site to yield validation mode (VAM) as described 

out by Rafique et al. (2011). Studies have revealed varying agreements between modelled 

and observed values Abdalla et al. (2011), Jiang et al. (2017) and Deng et al. (2016) 
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documenting good model agreement while according to Rafique et al. (2011) the model 

failed to capture negative N2O fluxes. High C to N ratio increases the DNDC model N2O 

fluxes; therefore, lowering the ratio can make the model predict soil N2O uptake (Uzoma 

et al., 2015). 

 

Model goodness of fit is implemented to describe disparities between observed and 

simulated (Giltrap et al., 2010; Deng et al., 2016). Statistical measures such as mean 

error (ME), root mean square error (RSME), coefficient of determination (R
2
), mean 

absolute error (MAE) and modelling efficiency (MEi) have been developed and widely 

used to statistically evaluate model performance (Smith et al., 1997; Wang et al., 2011; 

Gilhespy et al., 2014; Uzoma et al., 2015; Li et al., 2017). These measures provide a 

researcher with a methodology to report how well the model predicts a set of measured 

values.  

 

2.8 Summary and Research Gap Identified 

Smallholder farming systems in SSA are both socially diverse, spatially heterogeneous 

and are faced with abundant challenges such as water stress, climate change shocks and 

soil fertility decline consequently lowering agricultural productivity (Tittonel et al., 2010; 

Alverez et al., 2014). The heterogeneity of these smallholder farming systems constrains 

technological interventions aimed at increasing food security, whereas mitigating GHG 

emissions. Smallholder farming systems typologies provide a novel entry point in 

addressing smallholder farming systems challenges. The variables used in characterising 

the smallholder farming systems are based on research objective hence they are not 

universally applicable (Giller et al., 2011; Kamau et al., 2018) thus the need to develop 

farm typologies aimed at GHG quantification, simulation and mitigation. Thus farm 

typologies aimed at addressing farmers challenges should be woven within the context of 

farm socio-economic characteristics. Information on farm typologies is scanty and 

inadequate to inform agricultural greenhouse gas emissions quantification, simulation and 

mitigation. Soil fertility decline is a significant peril to agricultural production in SSA 

and the Central Highlands of Kenya. The use of ISFM has contributed significantly to 

increasing agricultural productivity among smallholder farming systems. However, there 
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is a dearth of information showing the nexus between agricultural productivity and 

climate change mitigation by reducing GHG emissions in Tharaka-Nithi County. This 

calls for smallholder farming systems in Tharaka-Nithi County to guide GHG emission 

quantification, simulation and mitigation. Since direct quantification of agricultural GHG 

is expensive and somewhat impractical for the national level, this demands the use of a 

biogeochemical model to simulate agricultural trace gas emissions. The model was 

purposively designed to simulate carbon and nitrogen dynamics from agricultural soils. 

The model has been modified over the last two decades to simulate crop growth, tracer 

gas emission, soil temperature, nutrients concentrations and moisture. Estimating N2O 

YSE and EFs based on simulated N2O emissions and grain crop provides integral data 

useful in identifying soil fertility management technology that can promote food security 

while mitigating GHG emissions.  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Area 

The study was conducted in Maara, Chuka and Igamba Ng‘ombe sub-counties in 

Tharaka-Nithi County. The study area experiences bi-modal rainfall with long rains (LR) 

occurring from March to June and short rains (SR) from October to December. The 

annual rainfall amount ranges from 600 mm to 2200 mm (Jaetzold et al., 2007). The 

study area is within eight Agro-Ecological Zones (AEZs) namely: LH1 - tea diary zone, 

LH2 - wheat/maize pyrethrum zone, UM1 - coffee tea zone, UM2 - marginal coffee zone, 

UM4 - sunflower maize zone, LM3 - cotton zone, LM4 - marginal cotton zone and LM5 - 

millet Livestock Zone (Jaetzold et al., 2007). The altitude ranges from 600 m at lowlands 

to 5200 m a.s.l at the peak of Mt. Kenya. Annual mean temperature ranges from 14 °C
 
to 

17 °C in the highlands and 22 °C to 27 °C in the lowlands with a long-term average 

temperature of 20 °C. The predominant soil type in the area is Humic-nitisols and has 

clay content of 78% (Ngetich et al., 2014a). Major economic activities in the area are 

crop and livestock productions, especially maize cropping. During the 2019 census 

Igamba Ng‘ombe, Maara and Chuka sub-counties recorded a population of 53,210, 

114,894 and 91,080, respectively (Table 3.1), KPHC, 2019).  

 

3.2 Study Design 

The study employed a mixed-design approach to implementation. To characterise the 

prevailing farming systems and evaluate socio-economic factors influencing their 

diversity, a cross-sectional survey was carried out. For DNDC modelling, calibration, 

validation and accuracy evaluation, a one-year GHG quantification experiment was laid 

out in a randomised complete block design (RCBD). 
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3.3 Objectives 1 and 2: Farming Systems Characterisation and Socio-economic 

 Factors Influencing Farm Typologies 

3.3.1 Sampling Design 

The sample size was calculated using the Cochran formula (Bartlett et al., 2001). 

 

n 
  pq

  
 
 .9 

 
  . ( - .  

 .     
 3        Equation 3.1 

 

Where: n= Sample size, z= z value (e.g. 1.96 for 95% confidence level), p= percentage 

picking a choice, expressed as decimal (0.5), q= 1-p and E = 5.65 % allowable error, 

expressed as decimal (0.0565).  

 

The study design and implementation was a cross-sectional survey. The multi-stage 

sampling procedure was used to determine the interviewed households. First, Chuka, 

Igamba Ng‘ombe, and Maara sub-counties in Tharaka-Nithi County were purposely 

selected based on previous ISFM studies conducted in the area that could influence GHG 

emissions. Secondly, total sampling was used to select all ten wards in the selected sub-

counties, where primary data were collected at the household level (Table 3.1). Thirdly, 

probability proportionate to size sampling method was used to calculate the number of 

households (the sample size [n]) to be sampled in each ward using a sample frame 

obtained from respective agricultural offices at the ward level. The total number of 

farming households (N) in each ward was divided by the sample size to obtain the 

interval size (k). Finally, a simple systematic sampling procedure was used to collect data 

in each ward. The first household in each the ward was randomly selected; afterwards, 

each k
th

 farming household in the list was sampled. Sampled household spatial 

distribution is shown in Figure 3.1. 
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Figure 3.1  Map of the study area showing geo-referenced sampled households and 

Kigogo primary school experimental site. 

 

  



 

20 

 

Table 3.1 Population and sample size per ward in Maara, Chuka and Igamba Ng‘ombe 

 Sub-Counties 

Sub-county Ward Population Sample size 

Maara Mitheru   16,419   19 

 Muthambi   20,778   24 

 Ganga   18,784   22 

 Mwimbi   24,598   28 

 Chogoria   34,314   40 

 Sub-total 114,894 133 

Chuka Karingani   25,145   29 

 Magumoni   39,657   46 

 Mugwe   26,278   30 

 Sub-total  91,080 105 

Igamba Ng‘ombe Igamba Ng‘ombe   36,240   42 

 Mariani   16,970   20 

 Sub-total   53,210   62 

 Total  259184 300 

Source interpolation of wards‘ population GoK (2010) and sub-counties‘ population 

(KPHC, 2019) 

 

3.3.2 Data Collection  

The data were collected using a semi-structured interview schedule following prior pre-

testing and appropriate modification. The study targeted to interview household heads or 

most senior family member in case of the absence of the family heads. The study relied 

on farmers‘ farm records and remembrance of preceding six cropping seasons and 

alterations at the plot level. Three years were considered satisfactory to elucidate on 

agricultural GHG emissions quantification and simulation. The interview schedule had 

questions on farm identity, socio-capital, cropping activities, soil management, livestock 

systems, demographics and wealth characteristics. The interview schedule was 

administered using Open Data Kit (ODK) mobile app by well-trained enumerators. 

 

3.4 Multivariate Analysis 

Basic conversions were executed for the survey variables to obtain standard values. 

Nitrogenous (N) fertiliser application rate was calculated from nutrient concentration 

ratio. Nitrogen applied from manure was converted based on 2.1% concentration (Kiboi 

et al., 2018). Total tropical livestock unit (TLU) was calculated for each livestock where 
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1 TLU is equal to 1 mature cow of 250 kg (FAO, 2003). The TLU for each livestock was 

determined following Jahnke (1982) and Chilonda & Otte (2006) whereby a cattle, sheep, 

goat, pig, chicken, duck, and rabbit have TLU units of 0.7, 0.1, 0.1, 0.2 and 0.01, 0.03, 

0.02, respectively. Afterwards, the TLU was summed for each household. Household 

wealth asset index was determined using the Bill & Melinda Gates Foundation (BMGF), 

2010) guide, which assigns a weight to each household asset. Finally, households‘ 

income generated from crops, livestock and remittance were converted to a percentage of 

the total estimated income.  

  

The study variables were checked for accuracy and consistency, after which one 

incomplete response was eliminated from the sample; hence, a total of 299 respondents 

were subjected to statistical analysis. Farm typologies were constructed using the 

Principal component analysis (PCA) and cluster analysis (CA) in SPSS 23 software. 

Dimensional data reduction was performed using PCA after which the resultant non-

related principal components (PCs) were used as inputs in the CA. The multivariate 

analysis method has been successfully used by other related studies to cluster smallholder 

farming systems (e.g. Kuivanen et al., 2016a; Kamau et al., 2018; Lopez-ridaura et al., 

2018). 
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Table 3.2 Description of the variables used in creating farm typologies in the study area 

Variables description Code Unit 

Total land size owned Land size Ha 

Total land size under cultivation Cultivated land Ha 

Proportion of land on Maize Proportion Maize  Percentage (%) 

Nitrogen applied to Maize  Nitrogen Maize Kg N ha
-1 

Proportion of land on Tea Proportion Tea Percentage (%) 

Nitrogen applied to Tea Nitrogen Tea Kg N ha
-1

 

Proportion of land on Coffee Proportion Coffee Percentage (%) 

Nitrogen applied to Coffee Nitrogen Coffee Kg N ha
-1

 

Proportion of land on Banana Proportion Banana Percentage (%) 

Nitrogen applied to Banana Nitrogen Banana Kg N ha
-1

 

Proportion of land on Beans Proportion Beans Percentage (%) 

Nitrogen applied to Beans Nitrogen Beans Kg N ha
-1

 

Proportion of land on Napier Proportion Napier Percentage (%) 

Nitrogen applied to Napier Nitrogen Napier Kg N ha
-1

 

Proportion of land on Tobacco Proportion Tobacco Percentage (%) 

Nitrogen applied to Tobacco Nitrogen Tobacco Kg N ha
-1

 

Proportion of land on Millet Proportion Millet Percentage (%) 

Nitrogen applied to Millet Nitrogen Millet Kg N ha
-1

 

Tropical Livestock Unit TLU
 

Numeric 

Household Wealth Assets Index WI
 

Numeric 

Note; ha= hectares, kg N ha
-
=kilogram Nitrogen per hectares  

 

Kaiser Mayer-Olkin (KMO) and Bartlett‘s sphericity test was done to check data 

credibility for factoring, similar to the study of Mugi-Ngenga et al. (2016). Orthogonal 

rotation (Varimax method) was used to group study variables. All PCs exceeding an 

Eigenvalue of 1 were initially retained. Kaiser Normalization criterion is considered 

accurate for variables < 30 and sample size < 250 (Field, 2005). However, the sample 

size used in this study was greater than 250 household heads. Therefore, the study opted 

for further checks such as the explained cumulative variance of ≤ 60% Hair et al. (2006) 

and loading ≥ 0.50, which were considered for interpretation (Field, 2013).  

 

The PCA retained factors were used in CA to construct farm types. A two-step clustering 

procedure was performed i) hierarchical agglomerative clustering algorithm using Ward‘s 

method to form the number of groups and ii) partitioning algorithm to separate the groups 

to a given number of clusters. The numbers of clusters retained in hierarchical 

agglomerative clustering were used in partitioning. A dendrogram was used to select the 
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number of clusters used as farm types. The variables used to typify farming systems 

(Table 3.2) were subjected to one-way analysis of variance (ANOVA) in SPSS version 

23 at p = 0.05 and mean separated using Tukey‘s honest significance difference (HSD) 

test. The data were subjected to ANOVA to identify socio-economic factors that were 

significant in constructing farm types similar to (Macharia et al., 2014; Murage et al., 

2019), Table 3.3). A multinomial logistic regression model was run in SPSS version 23 to 

evaluate socio-economic factors that influenced farmers belonging to a specific farm 

typology. 

 

Table 3.3 Definition of independent variables used in the multinomial logistic regression  

 analysis 

Variables Definition 

Dependent variable  

Farm typologies 1,2,3,4,5 & 6 

Independent variables  

Household Head Gender 0 Female  

 1 Male 

Household Head Education 0 No formal Education 

 1 Primary 

 2 Secondary 

 3 Tertiary  

Hired Labour 0 No 

 1 Yes 

Group Member 0 No 

 1 Yes 

Credit Access 0 No 

 1 Yes 

Training Access 0 No 

 1 Yes 

Extension Access 0 No 

 1 Yes 

Household Head Age (years) Continuous 

Household Head Experience (years) Continuous 

Household size (number) Continuous 

Proportion of income from Crop (percentage) Continuous 

Proportion of income from Livestock (percentage) Continuous 

Proportion of income from Remittance (percentage) Continuous 

Note; Type 1, cash crop and hybrid cattle farmers; Type 2, food crop farmers; Type 3, 

coffee-maize farmers; Type 4, millet-livestock farmers; Type 5, highly diversified farmers, 

and Type 6, tobacco farmers 
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3.5 Objectives 3 and 4: The DNDC Modelling, Calibration, Validation and 

 Evaluation 

3.5.1 Experimental Set-Up and Agronomic Management 

Nitrous oxide quantification experiment was laid out in randomised complete block 

design with four treatments replicated thrice. The treatments of interest were: i) control 

(No fertiliser input), ii) inorganic fertiliser (NP, 23.23, 120 kg N ha
-1 

yr
-1

), iii) animal 

manure (goat manure, 120 kg N ha
-1

yr
-1

), and iv) animal manure + inorganic fertiliser 

(120 kg N ha
-1

yr
-1

). Maize (Zea may L.) HB 516 variety was used as test crop. Plot 

dimensions were 6 m by 4.5 m. The maize planting holes were spaced as 0.75 m between 

rows and 0.50 m within rows. Land and manure incorporation was manually done using 

hand hoe a week prior to planting. Nitrogen concentration of the locally acquired goat 

manure was done using a C/N analyser (Thermal Scientific, Flash 2000 Analyser, 

Waltham, MA 180 USA). The animal manure nitrogen content was 1.9 ± 0.2 %. 

Therefore, 3158 kg ha
−1

 and 1579 kg ha
−1

 of goat manure per season for animal manure 

and animal manure + inorganic fertiliser treatment was incorporated to meet the 

recommended N requirement. Planting coincided with fertiliser application and therefore, 

260.8 kg ha
-1

 and 130.4 kg ha
-1

 per season of NP (23.23) for inorganic fertiliser and 

animal manure + inorganic fertiliser treatment was applied. To ensure weed-free plots, 

weeding was manually done using hand hoe twice a cropping season. 

 

3.5.2 Soil N2O Fluxes Measurement and Gas Chromatography 

A total of 46 soil N2O fluxes sampling campaigns were done from March 2018 through 

March 2019 using a static chamber technique. The chamber had two components a lid 

and a base. Three chambers were installed in each sampling plot to a depth of 7 cm. 

During each sampling event, four gas samples at chamber headspace closure of 30 min 

were collected. Gas pooling techniques following Arias-Navarro et al. (2013) was used to 

collect the gas samples at an interval of 10 min. The samples were analysed for the soil 

N2O concentration using an SRI 8610C gas chromatography (GC), SRI Instruments, 

Torrance, CA, USA) fitted with a 
63 

Ni-electron capture detector (ECD. Hourly soil N2O 

fluxes (μg N2O-N m
-2

 h
-1

) were calculated by converting the concentrations to mass per 
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volume accounting for auxiliary measurements such as actual air temperature, chamber 

volume, and ambient pressure as per ideal gas law (Pelster et al., 2017). To determine 

daily soil N2O fluxes (μg N2O-N m
-2

 d
-1

), the chamber soil N2O hourly fluxes were 

multiplied by 24 hour period. Linear interpolation between sampling days based 

trapezoidal rule was used to calculate cumulative seasonal/annual cumulative soil N2O 

fluxes from each sampling plot. 

 

3.5.3 Soil Sampling and Maize Crop Production  

At the beginning of the experiment (March 2018), soil samples for determination of 

baseline soil properties determination were collected. At each sampling plot, three 

samples at 0 to 20 cm depth were taken using an Eijkelkamp Gouge auger (Eijkelkamp 

Agrisearch Equipment, Giesbeek, The Netherlands) and pooled together in a labelled 

ziplock bag. The samples were oven-dried at 40 °C for 72 h, ground using a ball mill 

(Retsch ball mill, Haan, Germany), and sieved through a 2 mm sieve. A sub-sample of 

1:2 soil: water ratio and a glass probe pH meter (Crison Instruments, Barcelona, Spain) 

was used for pH determination. Soil nitrogen and carbon were determined using a C/N 

analyser (Thermal Scientific, Flash 2000 Analyser, Waltham, MA USA). At each 

sampling plot, three soil bulk density samples (0 - 5 cm depth) were collected using a 100 

cm
3
 core rings (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands). The 

samples were oven-dried at 105 °C for a day then soil bulk density determined following 

Okalebo et al. (2002), Table 3.4).  

 

During harvesting, maize yields were separated into grain, leaf, stem, and root. The leaf, 

stem, and root were harvested at plot dimensions of 1.5 m
2
 (eight plants) while grain at 

the net plot (21 m
2
). Both wet and dry weight were recorded and extrapolated to 10,000 

m
2
. Maize grain yields were adjusted to 12.5 % moisture content following Ngetich et al. 

(2014a). Meteorological data (daily precipitation, solar radiation, air pressure, maximum 

and minimum air temperature, humidity and wind speed) were obtained from an 

automatic weather station mounted within the experimental site at (1434 m a.s.l, 

  ° 3‘  . ‘‘ S and  37°37‘37. ‘‘ E).  
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Table 3.4 Mean (± 1 standard error of the mean) baseline soil physicochemical characteristic Tharaka-Nithi County 

Treatment
 1

 Bulk density 

 (g cm
-3

) 

pH Total Nitrogen 

(%) 

SOC (%) C/N Ratio 

Control 0.98±0.01 5.06
a2

±0.02  0.20±0.01 2.26±0.09 11.12±0.07 

Fertiliser 0.96±0.01 5.04
a
± 0.08  0.21±0.01 2.33± 0.13 11.28±0.17 

Manure 0.97±0.01 4.70
b
±0.04  0.20±0.01 2.48±0.31 12.59±1.41 

Man+Fert 0.97±0.01 4.73
b
± 0.06  0.25±0.03 2.79±0.30 11.17±0.23 

P value 0.3  0.002  0.2 0.4 0.5 
1
 Treatments Control = (No external input), fertiliser = (inorganic fertiliser NP. 23.23, 120 kg N ha−1 yr-1), Manure= (animal manure, 

120 kg N ha−1 yr-1) and Man + Fert= (animal manure+ inorganic fertiliser, 120 kg N ha−1 yr-1). 
2
 Same superscript letters in the same column denote no significant difference between the treatments means at P ≤0.05. 
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3.5.4 DNDC Modelling 

The DNDC model version 9.5; http://www.dndc.sr.unh.edu, was downloaded in August 

2019 to simulate crop production and N2O fluxes. The input parameters used in 

simulating treatment-specific tracer N2O fluxes and crop yields were categorised into the 

soil, weather, vegetation, and farm management data. Initial in situ and default soil data 

used were; texture, bulk density, hydraulic conductivity, SOC, field capacity, C to N 

ratio, wilting point, and porosity. The observed soil data were obtained from a baseline 

soil samples analysis using standard laboratory procedure (Ryan et al., 2001). Daily 

weather data such as solar radiation, wind velocity, precipitation, minimum and 

maximum air temperature, and relative humidity used were obtained from adjacent 0.5 

km automated weather station. Farm management data such as manure amendments, 

fertilization, tillage, planting and harvesting dates were obtained from the experimental 

set-up. 

 

3.5.5 Model Calibration and Validation 

The DNDC model was calibrated with measured N2O fluxes from the control treatment. 

The model was first run with observed parameters to obtain default mode (DEM) 

following (Rafique et al., 2011). Further, the DNDC model was calibrated using the soil 

parameters from control treatment to give simulated soil N2O fluxes that agree well to the 

measured values that are calibration mode (CAM). During calibration, the following soil 

data was used bulk density, clay content, SOC, C to N ratio, and soil pH. The calibration 

was run to evaluate the effects of a range of parameters to the observed soil N2O fluxes. 

This helped to construct an optimised set of parameters that resulted in the best fit for the 

soil N2O to the measured value. The model was then validated using an optimised set of 

parameters in simulating N2O fluxes and maize production for the other three treatments.  

 

http://www.dndc.sr.unh.edu/
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3.5.6 Model Evaluation 

The model goodness of fit was measured using a coefficient of determination (R
2
),

 
mean 

error (ME), modelling efficiency (MEi), mean absolute error (MAE), and root mean 

squared error (RMSE), (Rafique et al., 2011; Moriasi et al., 2007):  
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Si and 0i represent simulated values from the DNDC model and measured values from 

field trials, i one observation, n total observations and  ̅ = the mean value of the observed 

data. Pi and p represents i
th

 and mean prediction, respectively. Observed and simulated 

data were fitted in zero to intercept linear regression. The observed and simulated data 

were subjected to Analysis of Variance in SAS 9.4 software and mean differences 

between treatments separated using least significant difference at p ≤ 0.05. 

 

3.5.7 Model Sensitivity Analysis 

A sensitivity assessment is done to test model performance when various input 

parameters are changed (Giltrap et al., 2015). This helps to identify which input 

parameters have a high influence on simulating emissions. The following parameters 

were altered to determine their influence in predicting GHG emissions: soil properties, 
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crop, climate and farm management. The model revealed that soil clay content, pH, SOC, 

bulk density, and inorganic nitrogen were more sensitive in simulating soil N2O fluxes. 

 

3.6. Estimation of Yield Scaled N2O Emissions and Emission Factors 

The yield scaled N2O emission in g N2O-N Kg
-1

 was calculated by dividing cumulative 

annual fluxes to air-dried grain yield eq. 3.7. 

 S  
N  

  
        Equation 3.7 

Where YSE = N2O yield scaled emission in g N2O-N Kg
-1

, N2O = N2O emission and GY 

= air-dried grain yield. 

Emission factor were determined following equation. 3.8 (Giltrap et al., 2013). 

   
                                                            

         
 Equation 3.8 

 

Where EF = emission factor, N2O emission with N applied treatments = N2O emission 

from the nitrogen fertilised treatments, N2O emission with 0 N applied = N2O emission 

from control and N applied = Nitrogen application rate per year. 
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CHAPTER FOUR 

RESULTS 

4.1 Overview 

This chapter presents the extracted principal components, the characterised smallholder 

farm typologies and socioeconomic factor that influenced the diversity of farm 

typologies. Further, the DNDC calibration, validation and accuracy assessment resulted 

are presented. Finally, the simulated and observed maize yield (grain, stem, leaf and 

root), soil N2O fluxes, yield scaled N2O emission, and emission factor results are 

reported. 

4.2 Smallholder farming systems characterisation 

4.2.1 Extracted Principal Components 

The PCA results revealed a KMO of 0.57, and Bartlett‘s sphericity test was significant at 

p<0.001. The reported KMO was greater than 0.50; hence PCA was considered 

appropriate. The first PC had high positive loadings in the proportion of land on maize 

(0.922) and nitrogen applied on maize (0.924) which explained variance of 11.2%, and 

therefore, identified as maize cropping system (Table 4.1). The second PC that had high 

positive loadings in the proportion of land on millet (0.863) and nitrogen applied on 

millet (0.730) explained 9.4% of the variance, consequently, identified as millet cropping 

system. The third PC had high positive loadings in the proportion of land under tobacco 

(0.892) and nitrogen applied on tobacco (0.889), explaining 8.7% of the variance and 

thus identified as tobacco cropping system. The fourth PC that had high positive loading 

in the proportion of land on tea (0.818) and nitrogen applied on tea (0.850) which 

explained 8.5% of the variance, therefore, identified as tea cropping system.  

 

The fifth PC had high positive loading in land size (0.831), and farm size (0.865) 

explaining 8.14% of the variance thus identified as land size characteristics. The sixth PC 

had high positive loadings in the proportion of land on Napier (0.819) and nitrogen 

applied on Napier (0.734) which explained 7.74% of the variance, therefore, categorised 

as Napier cropping system. Lastly, the seventh PC had high positive loading in TLU, and 
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WI, which explained 7.69% of the variance and therefore identified as livestock systems 

and household wealth assets index. 

 

Table 4.1 Extracted principal components (PCs) from smallholder farmers in Tharaka-

Nithi County 

Independent  

Variables 

Principal Components 

1 2 3 4 5 6 7 

Proportion Maize 0.922 -0.160 -0.009 -0.241 -0.106 -0.128 -0.022 

Nitrogen Maize 0.924 -0.149 -0.005 -0.250 -0.096 -0.118 0.006 

Proportion Millet -0.115 0.863 -0.028 -0.080 0.111 -0.054 0.080 

Nitrogen Millet -0.095 0.730 -0.061 -0.103 -0.091 -0.103 -0.063 

Proportion tobacco 0.002 -0.070 0.892 -0.075 -0.031 -0.069 -0.052 

Nitrogen tobacco 0.023 0.008 0.889 -0.066 -0.026 -0.047 0.076 

Proportion Tea -0.286 -0.120 -0.096 0.818 -0.035 -0.058 0.002 

Nitrogen Tea -0.139 -0.056 -0.063 0.850 -0.109 0.134 0.075 

Land size -0.029 0.098 -0.034 -0.094 0.831 -0.062 0.162 

Farm size -0.093 -0.020 -0.020 -0.040 0.865 -0.046 -0.007 

Proportion Napier -0.210 -0.086 -0.070 -0.101 -0.042 0.819 -0.092 

Nitrogen Napier 0.017 -0.028 -0.068 0.257 -0.082 0.734 0.271 

TLU -0.044 0.503 0.036 0.073 0.226 0.215 0.535 

WI 0.008 -0.012 0.042 0.049 0.101 0.031 0.838 

Proportion Coffee -0.460 -0.364 -0.260 -0.112 -0.152 -0.169 0.413 

Nitrogen Coffee -0.314 -0.324 -0.211 -0.050 -0.141 0.158 0.302 

Proportion Beans 0.197 -0.105 0.057 -0.183 0.019 0-.110 -0.341 

Nitrogen Beans -0.050 -0.075 -0.023 -0.104 -0.061 -0.068 0.181 

Proportion banana -0.013 -0.110 -0.078 -0.008 -0.126 -0.090 0.037 

Nitrogen banana -0.086 -0.059 -0.024 -0.061 -0.046 0.367 -0.032 

Eigenvalue 2.242 1.888 1.740 1.696 1.628 1.549 1.535 

% explained 

variance 

11.2 9.4 8.7 8.5 8.1 7.7 7.7 

%cumulative 

Variance  

11.2 20.7 29.4 37.8 46.0 53.7 61.4 

Bold Number referred to loadings higher than 0.50. KMO (0.57, p<0.001), PC 1= Maize 

cropping system, PC 2 = Millet cropping system, PC 3= Tobacco cropping system, PC 4= 

Tea cropping system, PC 5= Land size characteristics, PC 6= Napier cropping system, 

PC 7= livestock systems and household wealth assets index 
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4.2.2 Smallholder Farming Systems Typologies 

The dendrogram from the cluster analysis illustrates how the nested clusters were cut to 

identify farm types (Figure 4.1). The cut tree point was at C to obtain six farm types. 

 

 
Figure 4.1 Dendrogram with four cut tree points A, B, C and D The dendrogram was cut 

at C, and six farm typologies were identified. Type 1, cash crop and hybrid 

cattle system; Type 2, food crop system; Type 3, coffee-maize system; Type 4, 

millet-livestock system; Type 5, highly diversified system, and Type 6, tobacco 

system. 

 

Farm Type 1 comprised of cash crop and hybrid cattle system (N=36 (12%), Table 4.2). 

This farm type varied from the rest by the proportion of land and nitrogen applied on tea, 

coffee and Napier. This farm type had the least proportion of land and nitrogen applied to 

maize. Further, farmers in this category neither grew tobacco nor grew millet and had the 

least proportion of land and nitrogen applied on beans. The farmers in this category also 

owned the least total land size. More so, they had moderate total TLU, the proportion of 

land and nitrogen applied on bananas.  
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Table 4.2 Smallholder farming systems‘ descriptive characteristics based on nitrogen application rates in Tharaka-Nithi County 

Independent 

Variable 

Cash crop and 

hybrid cattle 

system  

N=36 

Food 

crop 

system 

N=21 

Coffee-

maize 

system 

N=102 

Millet-

livestock 

system 

 N=19 

Highly 

diversified 

system 

N=92 

Tobacco 

system 

N=29 

P 

value 

Land size 0.58
b 

0.66
b 

0.75
ab 

1.17
a 

0.89
ab 0.69

b 
0.016 

Cultivated land 0.51
 

0.54
 

0.65
 

0.93
 

0.83
 

0.59
 

NS 

Proportion Maize  4.89
d 

29.91
b 

43.12
a 12.42

cd 
20.61

bc 
30.10

b 
0.001 

Nitrogen Maize 2.69
d 

15.91
b
 22.42

a 7.21
cd 

10.80
bc 

15.72
b 

0.001 

Proportion Tea 2.69
a 0.00

b 
1.86

b 
0.00

b
 7.45

b 
0.00

b
 0.001 

Nitrogen Tea 146.04
a 0.00

b
 4.43

b 
0.00

b
 6.52

b
 0.00

b
 0.001 

Proportion Coffee 22.84
a 7.17

bcd 
14.40

abc 0.66
d 

17.13
ab 2.71

cd 
0.001 

Nitrogen Coffee 157.18
a 26.53

b 
76.42

ab
 11.92

b 
77.42

ab 13.51
b 

0.001 

Proportion Banana 4.19
b 

1.95
b 

2.59
b 

0.00
b 

20.09
a 4.03

b 
0.001 

Nitrogen Banana 29.67
ab 

14.90
ab 

13.96
b 

0.00
b 

120.03
a 23.45

ab 
0.001 

Proportion Beans 0.44
c 

34.38
a 18.16

b 
4.53

c 
3.63

c 
18.24

b 
0.001 

Nitrogen Beans 0.13
c 

97.57
a 2.68

bc 
0.47

c 
1.59

bc 
16.65

b 
0.001 

Proportion Napier 13.74
a 5.27

ab 
6.09

ab 
2.13

b 
14.07

a 
3.85

ab 
0.001 

Nitrogen Napier 124.51
a 21.00

b 
40.42

b 
27.30

b 
39.57

b 
14.71

b 
0.001 

Proportion Tobacco 0.00
b 

0.00
b
 1.06

b 
0.00

b
 0.00

b
 33.30

a 0.001 

Nitrogen Tobacco 0.00
b
 0.00

b
 2.04

b 
0.00

b
 0.00

b
 125.55

a 0.001 

Proportion Millet 0.00
b 

1.19
b 

0.17
b 

35.15
a 0.66

b 
1.24

b 
0.001 

Nitrogen Millet 0.00
b
 0.09

b 
0.00 30.21

a 0.17
b 

0.89
b 

0.001 

TLU 2.36
b 

1.91
b 

1.73
b 

6.16
a 1.51

b 
1.70

b 
0.001 

Wealth Index 39.64
 

38.57
 

31.88
 

31.94
 

28.49
 

29.79
 

NS 

The same
 
superscript in the same row shows no significant difference between treatment means at p=0.05, N= number of household 

heads in a farm type, NS=Not significant at P=0.05, bold numbers indicate the most relevant explanatory variable(s) per farm type, 

land size and cultivated land = acres, the proportion of land allotted to different crops = percentage, nitrogen application on a crop = 

kg N ha
-1

, TLU = tropical livestock unit. 
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Farm Type 2 was composed of food crop system (N=21 (7%), Table 4.2). The key aspect 

that isolated this farm type from the others is that they primarily grew beans but did not 

grow either tea or tobacco. This farm type was also composed of farmers who had a low 

proportion of land and nitrogen applied on coffee, banana, Napier and millet. Total TLU 

and total land size owned were equally small (Table 4.2). 

 

In farm Type 3, most of the households were coffee and maize system (N=102 (34%), 

Table 4.2). These households had a moderate proportion of land and nitrogen applied to 

maize and coffee. These farmers had limited proportion of land and nitrogen applied on 

tea, banana, beans, tobacco and millet. Additionally, they had moderate total land size 

owned and nitrogen applied to Napier but low proportion of land on Napier and relatively 

low total TLU (Table 4.2).  

 

Under farm Type 4, most of the households were Millet-livestock system (N=19 (6%), 

Table 4.2). These households were distinct from the rest by owning the largest tracks of 

land and highest TLU. They had the highest proportion of land and nitrogen applied to 

millet. These farmers were not tea, coffee or tobacco growers. They had a low proportion 

of land and nitrogen applied on maize, coffee and beans (Table 4.2).  

 

Farm Type 5 comprised of a highly diversified system (N=92 (31%), Table 4.2). Farmers 

in this category had a high proportion of land and nitrogen applied to banana and coffee. 

They owned high to moderate land sizes and had moderate to low land and nitrogen used 

on maize. Additionally, they had a modest proportion of land and nitrogen applied to tea. 

These farmers had a small portion of land and nitrogen applied to beans and millet. 

Further, they had a high proportion of land on napier, but moderate nitrogen used on it 

and the lowest total TLU.  

 

Farm Type 6 comprised of tobacco system (N=29 (10%), Table 4.2). These farmers had 

the highest proportion of land and nitrogen applied to tobacco. They had a moderate 

proportion of land and nitrogen applied on maize, bananas, beans, napier, millet and 

coffee but low TLU (Table 4.2). 
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4.3 Socio-Economic Characteristics Influencing the Diversity of Smallholder Farm  

 Typologies 

4.3.1 Univariate Analysis of Socio-Economic Factors Influencing Farm Typologies 

The univariate analysis results showed that household head level of education, group 

membership, hired labour, the proportion of income from cropping activities, and access 

to extension services were the significant socio-economic factors that influenced farmers 

belonging to a specific farm typology (Table 4.3).  
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Table 4.3 Univariate analysis of socio-economic factors influencing farm types in Tharaka-Nithi County 

Independent 

variables 

Definition Cash crop and  

hybrid cattle 

system  

Food crop 

system  

Coffee-maize 

system  

Millet-

livestock  

system  

Highly 

diversified 

system  

Tobacco 

system  

χ2  

Value 

HHH Gender Female 7(13.5) 2(3.8) 21(40.4) 5(9.6) 15(28.8) 2(3.8) NS 

 Male 29(11.7) 19(7.7) 81(32.8) 14(5.7) 77(31.2 27(10.9)  

HHH Education No education 3(18.8) 1(6.3) 4(25.0) 4(25.0) 4(25.0) 0(0.0) 0.032 

 Primary 15(9.3) 7(4.3) 56(34.8) 13(8.1) 50(31.1) 20(12.4)  

 Secondary 11(14.5) 8(10.5) 30(39.5) 1(1.3) 21(27.6) 5(6.6)  

 Tertiary 7(15.2) 5(10.9) 12(26.1) 1(2.2) 17(37.0) 4(8.7)  

Hired Labour No 7(7.6) 6(6.5) 26(28.3) 10(10.9) 36(39.1) 7(7.6) 0.043 

 Yes 29(14.4) 15(7.2) 76(36.7) 9(4.3) 56(27.1) 22(10.6)  

Group Members No 20(9.7) 13(6.3) 78(37.9) 17(8.3) 58(28.2) 20(9.7) 0.044 

 Yes 16(17.2) 8(8.6) 24(25.8) 2(2.2) 34(36.6) 9(9.7)  

Credit Access No 30(11.7) 18(7.0) 90(35.0) 18(7.0) 75(29.2) 26(10.1) NS 

 Yes 6(14.3) 3(7.1) 12(28.6) 1(2.4) 17(40.5) 3(7.1)  

Training access No 20(10.9) 12(6.5) 63(34.2) 17(9.2) 57(31.0) 15(8.2) NS 

 Yes 16(13.9) 9(7.8) 39(33.9) 2(1.7) 35(30.4) 14(12.2)  

Extension Access No 21(9.1) 18(7.8) 83(35.9) 16(6.9) 73(31.6) 20(8.7) 0.050 

Yes 15(22.1) 3(4.4) 19(27.9) 3(4.4) 19(27.9) 9(13.2)  

Mean        p value 

HHH Age 55.18 49.48 53.04 54.16 55.49 49.38 NS 

HHH Experience 28.39 21.57 23.92 28.11 25.43 22.21 NS 

HH Size 3.94 4.55 4.34 4.60 4.18 4.06 NS 

Proportion of income from Crops (%) 43.56 16.45 30.26 32.55 32.63 45.14 0.0

1 

Proportion of income from Livestock (%) 23.70 19.83 19.59 32.82 21.12 16.87 NS 

Proportion of income from Remittance 

(%) 

3.50 4.92 4.52 1.05 3.67 1.47 NS 

Association significant at α = 0.05, HHH=Household head, HH= Household, χ  = chi square value  
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4.3.2 Socio-Economic Factors Influencing the Diversity of Farm Typologies  

Type 1: The multinomial logistic regression (MNLR) model identified six predictor 

variables: household head age, access to agricultural training, group membership, access 

to extension services, household head experience in agriculture, and proportion of income 

from cropping activities, as significant factors influencing farm Type 1 (Table 4.4). Type 

2: The MNLR model indicated that access to agricultural training, the proportion of 

income on cropping activities, and access to extension services were significant variables 

in explaining whether a farmer belonging to Type 2 (Table 4.4). Type 3: The MNRL 

model showed that access to credit, household head gender, and access to the agricultural 

extension was important in explaining farmers who belonged to farm Type 3 (Table 4.4). 

Type 4: The MNLR model revealed five predictor variables: household size, hired 

labour, household head level of education, the proportion of income from cropping 

activities, and proportion of income from livestock activities were significant in 

explaining farmers who belonged to Type 4 (Table 4.4). Type 5: The MNLR model 

showed four predictor variables: hired labour, household head age, household head level 

of education, and proportion of income from livestock activities were significant in 

explaining farmer who belonged to Type 5 (Table 4.4). 
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Table 4.4 Multinomial logistic regression analysis of socio-economic factors influencing farmers belonging to farm typologies 

Variables Cash crop 

and  

hybrid cattle 

system  

Food crop 

system 

Coffee-

maize 

system 

Millet-

livestock  

system  

Highly 

diversified 

system  

Constant -2.811 -0.033 1.693 2.427 0.182 

HHH Gender -1.566 -0.706 -2.181* -0.972 -0.978 

HHH Education 0.357 0.603 0.444 -1.027* 0.526* 

Hired labour 0.652 -0.800 -0.099 -0.978* 0.978* 

Group Membership 1.713** 0.201 -0.530 -0.944 0.049 

Credit Access 0.083 0.930 -0.730* 0.184 0.907 

Training Access -1.439** 0.046* -0.793 -0.793 -0.439 

Extension Access 0.523* -1.328* 1.127* -0.769 -0.769 

HHH Age 0.049* 0.006 0.010 0.018 0.042** 

HHH Experience 0.065* -0.064 -0.014 0.038 -0.016 

HH size -0.027 0.292 0.153 0.381* 0.078 

Proportion of income from Crops (%) 0.010* -0.031** -0.017 -0.019** -0.012 

Proportion of income from Livestock (%) 0.023 0.002 -0.007 0.020** -0.014* 

Proportion of income from Remittance (%) 0.065 0.039 0.083 -0.053 0.018 

**, * significance at 5% and 10%, respectively, HHH=Household head, HH= Household, the presented values are model coefficients 

of each independent variable 
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4.4 The DNDC Model Calibration, Validation and Accuracy Assessment 

The DNDC model accurately simulated cumulative seasonal/ annual soil N2O fluxes 

based on its R
2 

ranging from 0.78 to 0.88 and slope ranging between 0.95 and 1.1 across 

soil fertility management technologies (Figure 4.2). The DNDC model explained 78 to 88 

% of the observed N2O fluxes. 

 

Figure 4.2 The Zero to intercept linear regression between observed and simulated 

cumulative seasonal/ annual N2O fluxes a) = control (no external input), b) 

= inorganic fertiliser (NP 23.23, 120 kg N ha
-1

 yr
-1

), c) = animal manure 

(goat manure, 120 kg N ha
-1

 yr
-1

), and d) = animal manure + inorganic 

fertiliser (120 kg N ha
-1

 yr
-1

). 

 

The time series observed and simulated daily soil N2O fluxes across the four treatments 

from March 2018 through March 2019 are shown in Figure 4.3 
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Figure 4.3 The comparison between instantaneous observed and simulated daily N2O fluxes (μg N₂ -N m

-2 
h

-1
) from a)  = control (no 

external input), b) = inorganic fertiliser (NP 23.23, 120 kg N ha
-1

 yr
-1

), c) = animal manure (goat manure, 120 kg N ha
-1

 yr
-

1
), and d) = animal manure + inorganic fertiliser (120 kg N ha

-1
 yr

-1
). The vertical lines correspond to land preparation and 

manure application (continuous), planting and fertiliser application (dotted), weeding (dashed), and harvesting (long 

dashed). The Zero to intercept linear regression and R
2
 are shown. 
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The measured daily soil N2O ranged across soil fertility technologies ranged between 

−5.83 and 13.18 μg N2O-N m
−2

 h
−1

. The negative and positive soil N2O fluxes mean that 

the soil acted as a sink or source of the emissions, respectively. The simulated daily N2O 

fluxes ranged between 0 and 15.25 μg N2O-N m
−2

 h
−1 

across soil fertility treatments. The 

DNDC model captured both timing and magnitude of the soil N2O fluxes peaks across 

treatments except control. The model underestimated soil N2O peak on 16
th

 May 2018. 

Additionally, the model did not capture the negative daily soil N2O fluxes across soil 

fertility management technologies.  

 

The comparison between simulated and observed daily soil N2O fluxes using zero to 

intercept regression resulted to a slope that ranged from 0.72 to 0.94, and R
2
 ranged from 

0.60 to 0.75 across treatments (Figure 4.3). The model was not able to accurately capture 

the temporal trends in soil N2O fluxes as shown by high nRMSE ranging between 54 and 

68 % across all treatments. The comparison between simulated and observed daily soil 

N2O fluxes using zero to intercept regression resulted in a slope that ranged from 0.72 to 

0.94, and R
2
 ranged from 0.60 to 0.75 across treatments (Figure 4.3). Across all the four 

treatments, the model performance resulted in calculated matrices that ranged between E 

= -0.80 and -0.28 μg N2O-N m
−2

 h
−1

, RMSE = 2.17 and 2.65 μg N2O-N m
−2

 h
−1

, and 0.26 

≤ MEi ≤ 0.49 (Table 4.5). 

 

The site received a cumulative annual rainfall amount of 1815 mm. The LR 2018 and SR 

2018 season had 1193.5 mm and 621.5 mm, respectively (Figure 4.3, e). The highest 

daily rainfall amount recorded in LR and SR season 2018 was 138 mm and 69 mm, 

respectively. 
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Table 4.5 The model evaluation matrices comparing between simulated and measured 

daily and cumulative seasonal/ annual soil N2O fluxes Tharaka-Nithi County 

Season
1
 Treatment

2
 ME RMSE nRMSE 

 (%) 

MEi 

Daily Control -0.80 2.17 68.43 0.26 

(μg N2O-N m
−2

 h
−1

) Fertiliser -0.68 2.65 53.56 0.45 

 Manure -0.69 2.29 63.34 0.32 

 Man+Fert -0.28 2.48 59.37 0.49 

LR 2018 Control 1.95 22.58 15.05 0.92 

(g N2O-N ha
-1

) Fertiliser -12.13 15.42 6.18 0.89 

 Manure -22.55 33.53 16.89 0.96 

 Man+Fert -18.09 25.91 11.88 0.81 

SR 2018 Control -8.14 8.89 13.44 0.97 

(g N2O-N ha
-1

) Fertiliser 19.72 28.96 22.94 0.94 

 Manure -5.46 7.12 9.79 0.71 

 Man+Fert 18.47 26.31 28.74 0.89 

Annual Control -6.19 21.77 10.07 0.86 

(g N2O-N ha
-1

 yr
-1

) Fertiliser 7.59 31.49 8.38 0.71 

 Manure -28.01 34.89 12.86 0.63 

 Man+Fert 0.39 19.07 6.16 0.76 
1 

Daily is the sampling events, LR 2018 is the long rain 2018 season, SR 2018 is the short 

rain 2018 season and annual is the two cropping season March 2018 through March 

2019. 
 

2
 Treatments Control = (No external input), fertiliser = (inorganic fertiliser NP. 23.23, 

120 kg N ha−1 yr-1), Manure= (animal manure, 120 kg N ha−1 yr-1) and Man + Fert= 

(animal manure+ inorganic fertiliser, 120 kg N ha−1 yr-1). E is mean error and RSME 

root mean square error in μg N₂ -N m
-2 

h
-1

 for daily and
 
g N2O-N ha

-1
 for

 
cumulative 

seasonal/annual N2O fluxes,
 
nRSME is the normalised root means square error in %, and 

MEi is the Model efficiency. 

 

4.5 The DNDC Model Simulation 

The cumulative observed and simulated annual soil N2O fluxes ranged between 

0.21±0.01 and 0.38±0.02 kg N2O-N ha
-1 

yr
-1

 and 0.20 to 0.38 kg N2O-N ha
-1 

yr
-1

, 

respectively (Table 4.6). The DNDC model was capable of capturing the magnitude of 

cumulative soil N2O fluxes across the soil fertility management technologies (Table 4.5). 

Simulated and observed cumulative annual soil N2O fluxes greatly varied across 

treatment (Table 4.6). The highest soil N2O fluxes were observed under fertiliser 

treatment and the lowest under control treatment similar to the field experiment (Table 

4.6). Though the observed and simulated soil N2O fluxes were similar, the DNDC model 
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underestimated the fluxes (E = -6.19 and -28.01 g N2O-N ha
-1

 yr
-1

) in control and manure 

treatments while overestimating (E = 7.59 and 0.39 g N2O-N ha
-1

 yr
-1

) in fertiliser and 

manure + fertiliser treatments, respectively (Table 4.5). The overall model performance 

was as slope = 1.01, R
2
 = 0.80, RMSE ranged from 19.07 to 34.89 g N2O-N ha

-1
, 6.16 ≤  

nRMSE ≤ 12.86, and 0.63 ≤ MEi ≤ 0.86 (Table 4.5). 

 

With the exception of roots yields which were overestimated the DNDC model accurately 

simulating maize yields (grain, leaf, and stem) across soil fertility management 

technologies (Table 4.6). The highest grain yields were observed under fertiliser 

treatment and the lowest under control treatments. The DNDC model accurately captured 

both magnitude and treatment effects on maize yields. 
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Table 4.6 Mean (±1 standard error of the mean) observed and simulated soil N2O fluxes and Maize production (grain, stems, leaves and roots) 

under different soil fertility management technologies in Tharaka-Nithi County 

Treatment
1
 

kg N2O-N ha
-1

 yr 
-1

 Grain Mg ha 
-1

 yr 
-1

 Stem Mg ha 
-1 

yr 
-1

 Leaf Mg ha 
-1

 yr 
-1

 Root Mg ha 
-1

 yr 
-1

 

Observed Simulated Observed Simulated Observed Simulated Observed Simulated Observed Simulated 

Control 0.21
c2

±0.01 0.20
d
 8.2

c
±0.11 7.7

c
 4.1

c
±0.16 4.1

d
 5.7

c
±0.15 6.7

bc
 1.0

b
±0.01 1.1

b
 

Fertiliser 0.38
a
±0.02 0.38

a
 13.7

a
±0.27 13.4

a
 5.8

a
±0.10 5.8

a
 7.5

a
 ±0.23 7.6

a
 1.4

a
±0.02 1.5

a
 

Manure 0.27
b
±0.01 0.24

c
 11.3

b
±0.25 11.1

b
 4.5

b
±0.15 4.4

c
 6.7

b
±0.29 6.8

b
  1.1b±0.02 1.2

b
 

Man+Fert 0.31
b
±0.03 0.31

b
 13.0

a
±0.23 12.6

a
 5.0

ab
±.09 4.7

b
 6.6

b
±0.19 6.5

c
 1.2b±0.01 1.2

b
 

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 0.002 0.020 0.031 
1
 Treatments Control = (No external input), fertiliser = (inorganic fertiliser NP. 23.23, 120 kg N ha−1 yr-1), Manure= (animal manure, 120 kg 

N ha−1 yr-1) and Man + Fert= (animal manure+ inorganic fertiliser, 120 kg N ha−1 yr-1). 
2 

Mean maize yields followed by the same superscript in a column for the same season are not significantly different at p=0.05.  
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The observed N2O YSE and N2O EFs ranged from 0.024 to 0.028 g N Kg 
-1

 grain yield 

and 0.05 to 0.14 %, respectively (Table 4.7). The highest and lowest N2O YSE was in 

fertiliser and control treatments, respectively. The simulated N2O YSE and EFs ranged 

from 0.022 to 0.029 g N Kg 
-1

 grain yield and 0.03 to 0.14 %, respectively.  

 

Table 4.7 Mean (±1 standard error of the mean) observed and simulated yield-scaled N2O 

emissions and N2O emission factors under different soil fertility management 

technologies in Tharaka-Nithi County 

Treatment
1
  Yield-scaled N2O emission

2 

(g N2O-N kg
-1 

grain yield) 

 N2O Emission factors
3
 

(%) 

 Observed Simulated  Observed Simulated 

Control 0.027 ± 0.001 0.028±0.001  - - 

Fertiliser 0.028 ± 0.003 0.029±0.001  0.14
a4

±0.02 0.14
a
±0.01 

Manure 0.024 ± 0.002 0.022±0.001  0.05
b
±0.01 0.03

c
±0.01 

Man+Fert 0.024 ± 0.001 0.025±0.001  0.08
b
±0.02 0.08

b
±0.01 

P value 0.4 0.2  <0.001 0.001 
1
 Treatments Control = (No external input), fertiliser = (inorganic fertiliser NP. 23.23, 

120 kg N ha−1 yr-1), Manure= (animal manure, 120 kg N ha−1 yr-1) and Man + Fert= 

(animal manure+ inorganic fertiliser, 120 kg N ha−1 yr-1) 
2
 Yield-scaled N2O emission calculated by dividing maize grain yield with cumulative 

annual N2O emissions 
3
 N2O emission factors calculated by subtracting N2O emissions control treatment from 

N2O emissions in N applied treatments then dividing by annual N application rate (120 

kg N ha
−1

 yr
−1

). 
4
 mean N2O emission factors followed by the same superscript in the same column show 

no significant difference between treatments at p ≤ 0.05 
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CHAPTER FIVE 

DISCUSSIONS 

5.1 Overview 

This chapter presents the discussions for smallholder farming systems characterisation 

and socio-economic factors influencing the diversity of farm typologies. The DNDC 

calibration, validation and accuracy assessment results are linked to the existing body of 

knowledge. The DNDC model simulated results for soil N2O fluxes, and yield scaled 

N2O emission, emission factors and maize productions are also discussed.  

 

5.2 Smallholder Farming Systems Characterisation 

The study revealed a KMO 0.57 and Bartlett‘s sphericity test significance at p<0.001 

(Table 4.1). The observed KMO was greater than 0.50; hence PCA was considered 

appropriate (Gelasakis et al., 2017). The nitrogen application rate, land size owned by 

smallholder farmers and TLU were significant variables in typifying farming systems 

(Table 4.2). The ISFM techniques such as fertilisers and manure application shrink yield 

gaps (Vanlauwe et al., 2010; Vanlauwe et al., 2015). However, these practices might 

have an adverse effect on atmospheric GHG (CO2, CH4, N2O) emissions (Tongwane et 

al., 2016). Attempts directed towards agricultural GHG emissions measurements should 

consider farm-level nitrogen application rate. These farm typologies depicted different 

cropping systems and their average nitrogen application rates.  

 

In reference to GHG emissions, farm Types 1, 5 & 6 are expected to be hotspots of GHG 

emissions because of their high nitrogen application rates (Table 4.2). Type 2 & 3 are 

probable to contribute towards GHG emissions moderately. Though farm Type 4 is 

predicted to contribute least GHG emissions from cropping activities, high total TLU 

might contribute a significant amount of GHG emissions through manure production and 

enteric fermentation (Ortiz-Gonzalo et al., 2017). The results showed that smallholder 

farms in Tharaka-Nithi County had a range of categories from cash crop-hybrid cattle, 

food crop, coffee-maize, millet livestock, highly diversified and tobacco farmers. Total 
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land size owned, total tropical livestock unit, the proportion of land and nitrogen applied 

to different cropping systems were significant variables in constructing farm typologies. 

These classification variables were capable of differentiating farming systems. Dissimilar 

cropping systems and livestock intensities contribute differently to GHG inventories. 

Furthermore, nitrogen application rates might play a significant role in influencing these 

emissions. Therefore, nitrogen application in cropping systems can be an entry point for 

quantifying and simulating GHG emissions from individual cropping systems or whole 

farm emissions. 

 

Total TLU was a significant variable in categorising farming systems similar to studies 

by Sakané et al. (2013) and Kuivanen et al. (2016b). Studies have demonstrated that 

livestock densities have been increasing in Africa and are sources of GHG emissions with 

significant amounts emanating from ruminants (e.g. Herrero et al., 2008). The highest 

TLU was recorded in farm Type 4 that is concentrated in dry zones of the study area 

(LM5) that can be ascribed to their large land sizes (Table 4.2) which can be used for 

livestock production. Livestock act as GHG emissions source and is projected to increase 

over time  ‘ ara, (2011) through enteric fermentation and use of manure. Manure 

production increases with an increase in TLU, and its decomposition and management 

lead to GHG emissions (Ortiz-Gonzalo et al., 2017). 

 

Total and proportion of land allotted to each cropping system were important variables in 

capturing farms‘ diversity. These results collaborate with the findings by Mutoko et al. 

(2014) and Kansiime et al. (2018). The smallest land size was in Type 1, which was 

identified as cash-crop (tea and coffee) and hybrid cattle farmers while the largest in 

Type 4 as millet-livestock. Coffee and tea farmers owned small tracks of land as opposed 

to millet livestock farmers (Mwaura & Muku, 2008). The population density in coffee tea 

zones is high compared to the dry zone of millet-livestock hence this can account for the 

small land size in Type 1. 
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5.3 Socio-Economic Factors Influencing the Diversity of Farm Typologies  

Group membership positively predicted whether the farmer belonged to farm Type 1 

(Table 4.4). This implied that farmers who belonged to agricultural groups were more 

likely to belong to farm Type 1. Majority of these farmers grew coffee and tea as cash 

crops and reared hybrid cattle under high intensive management since they had small 

parcels of land (Table 4.3). These farmers marketed their coffee, tea and milk through 

farmers‘ cooperatives. Farmers in cooperatives are capable of improving their bargaining 

power hence gaining more from their agricultural products (Mugwe et al., 2009; 

Macharia et al., 2014). This could explain the positive prediction by the proportion of 

income from cropping activities which was the highest in this farm typology (Table 4.4). 

Belonging to cooperatives also increase access to agricultural information, inputs and 

other agricultural services that boost their agricultural production (Odendo et al., 2006). 

 

Farmers who belonged to this farm type were among the oldest in the study area and had 

the highest farming experience (Table 4.4). Household head age and farming experience 

positively influenced farmers belonging to this farm type. This implies that older and 

relatively more experienced farmers were more likely to belong to farm Type 1 than any 

other. Older and experienced farmers tend to trust traditional methods of technology 

transfer (i.e. extension officers) more than other types of agricultural training and could 

probably miss out new agricultural innovations. These findings agree with Macharia et al. 

(2014). They reported that older farmers might fail to utilise information on new 

technologies because they are risk-averse and less flexible than their young counterparts. 

Therefore, this could be the reason why access to agricultural extension positively 

predicted whether a farmer belonged to this farm typology (Table 4.4). The higher the 

farmer had access to agricultural extension, the higher the likelihood of belonging to farm 

Type 1 and which would result in higher incomes (Bowe & Van der Horst, 2015). 

According to Mugi-Ngenga et al. (2016), older farmers have less access to new 

information and trust the traditional extension officers. Further, this could also be 

explained by the negative prediction of access to agricultural training on whether a 

farmer belonged to farm Type 1 (Table 4.4). It could be that the farmers in this farm 
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typology either lacked access to formal training or were resistant to new knowledge and 

could be they believed they knew based on their many years of experience. 

 

Access to agricultural training positively predicted whether farmers belonged to Type 2, 

which was food crop systems (Table 4.4). The results inferred that the higher the access 

to agricultural training a farmer had, the more chances of that farmer belonging to farm 

type 2. Farmers in this group were younger with short farming experience (Table 4.4) 

implying that they had high access to modern technologies, more willing to learn, 

innovative and are lower risk-averse with longer planning horizons (Mapiye et al., 2006; 

Murage et al., 2019). According to Macharia et al. (2014), training is an important 

component of instilling knowledge and skills and hence builds the capacity of the target 

group. However, farm type 2 farmers had less access to extension services as specified by 

the negative prediction on access to extension services towards whether farmer belonged 

to this farm type (Table 4.4). This implies that the farmers in this farm type had less 

contact with extension services a factor that could have highly contributed towards the 

low proportion of income from crops (Table 4.4). The low proportion of income from 

cropping can be ascribed to inadequate information as these farmers had limited access to 

extension services. Farmers who access extension services reduce externalities increase 

profit and improve production efficiency for all agricultural products (Bowe & van der 

Horst, 2015). The proportion of income from cropping activities negatively predicted 

whether a farmer belonged to Type 2 (Table 4.4). Farmers who recorded low crop income 

were more likely to belong to this farm type. The limited earning from cropping in this 

farm type could be attributed to the lower years of farming experience and age. 

According to Akinola & Adeyemo (2013), high experienced farmers are more likely to 

increase agricultural productivity. 

 

Household head gender negatively predicted whether farmer belonged to farm Type 3 

(Table 4.4). The results exposed that female-headed households were more likely to 

belong to this farm typology than households headed by their male counterparts. 

According to Mugwe et al. (2009), males are the make most of the farming decisions, 
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including access to extension services. This might make them access more knowledge on 

agriculture management than their female counterparts (Nambiro et al., 2006). 

 

Access to extension services positively predicted whether farmers belonged to this farm 

type. This implies that access to extension services had a high chance of predicting 

farmers belonging to this farm type. However, there were more females not having access 

to extension services than the males (Table 4.4) which could be attributed to cultural 

norms and traditions Habtemariam and Düvel (2004) or lack of appropriate time 

schedules for the extension for females (Al-Shadiadeh, 2007). According to Mudege et 

al. (2017), stereotyping women limits their access to the extension. Access to credit 

facilities negatively predicted belonging to this farm typology (Table 4.4). This implies 

that this farm type was composed of farmers with a low likelihood of accessing credit. 

With most of the land and property ownership belonging to males in the study area, 

including some of the properties belonging to female-headed households, the female-

headed households with limited assets do not have access to credit as they may lack loan 

collateral. This lowers the agricultural production and profitability Awotide et al. (2015) 

partly by limiting access to agricultural inputs (Ekwere & Edem, 2014). 

 

Household head education level negatively predicted farmers who belonged to farm Type 

4 (Table 4.4). This implies that farmers who belonged to this farm type had low levels of 

education with the majority of the household heads having no formal education (Table 

4.4). Low education depicted in this farm type can be attributed to either marginalisation 

or lack of parents‘ will power to supports their children‘s education (Mucee et al., 2014). 

Further, household size positively influenced farmers who belonged to this typology 

(Table 4.4). This implied that farmers with large household size were more likely to 

belong to Type 4. Additionally, hired labour was a negative predictor in explaining 

whether farmers who belonged to Type 4 (Table 4.4). This implied that farmers who had 

no hired labour were more likely to belong to farm Type 4 since these households had 

adequate labour based on the large household sizes (Table 4.4). According to Odendo et 

al. (2006), household sizes reflect the amount of labour available for agricultural 
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activities. According to Bassey et al. (2014), large households prefer using borrowed 

labour which is cheaper rather to hired one.  

 

The proportion of income from cropping activities negatively predicted farmer who 

belonged to Type 4 (Table 4.4). Farmers who had a low proportion of income from 

agricultural activities were more likely to belong to this farm typology. The Type 4 farms 

are predominantly in marginal areas with low agricultural potential where farmers grow 

drought-tolerant crops (e.g. Millet) Ngetich et al. (2014b) which have low economic 

value hence the low proportion of income from cropping activities. The proportion of 

income from livestock activities positively influenced farmers who belonged to this 

typology (Table 4.4). This farm type had the highest total TLU (Table 4.2), and this could 

be the reason why this farm proportion from livestock positively predicted whether 

farmer belonged to this farm category. This agrees with Mganga et al. (2015), who stated 

that farmers in arid and semi-arid areas mostly depend on livestock rearing for livelihood.  

 

Household head education level positively predicted whether a farmer belonged to Type 

5 (Table 4.4). This indicates that farmers belonging to this farm type had attained higher 

education. Secondly, the age of the household head positively predicted farmers who 

belonged to this typology (Table 4.4). This again implied that the older farmers were 

likely to belong to this farm type. Similarly, the farmers in this typology used hired 

labour, which positively predicted belonging to Type 5 (Table 4.4). This typology had the 

oldest farmers across the farm typologies (Table 4.3), and they used hired labour to 

manage their farms. Aged farmers are less energetic, and they need the support of hired 

labour to manage their farms. According to Bassey et al. (2014), aged farmers use hired 

labour to enhance farming activities, which require more energy that they might not have. 

According to Bathon & Maurice (2015), young farmers are more energetic and 

economically active; therefore, with adequate access to farm inputs, they can boost 

agricultural productivity. More so, the proportion of income from livestock activities 

negatively influenced farmers who belonged to farm this typology (Table 4.4). Farmers 

who had small herds of livestock could belong to farm Type 5 than any other. Farmers in 

this typology had moderate total TLU, which signifies the small number of livestock 
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kept. This could explain why the proportion of income was negative predictors as low 

total TLU suggests they kept a small number of ruminants (Chilonda and Otte, 2006). 

Further, ruminants are essential in agricultural systems and the economy as they raise 

more profits (Lawal-Adebowale, 2012). 

 

5.4 The DNDC Calibration and Validation  

The DNDC model captured both timing and magnitude of the soil N2O fluxes peaks 

across treatments except control. As noted in other DNDC simulating studies including 

Uzoma et al. (2015) and Giltrap et al. (2010) peak soil N2O fluxes occurred following 

soil fertilisation which coincides with the timing of precipitation. The peaks under control 

treatment coincided with precipitation events which were in agreement with Abdalla et 

al. (2020) who reported peak N2O fluxes under control treatment following rainfall 

events in Hebei, China. Additionally, the model did not capture the negative daily soil 

N2O fluxes across soil fertility management technologies that could be ascribed to 

underestimation of soil moisture and N mineralisation. Though after calibration, the 

observed and simulated seasonal and annual soil N2O fluxes were close, the model over 

and underestimated the emissions in some days (Figure 4.2). This can be ascribed to the 

high spatial and temporal distribution of extractable nitrogen (Rafique et al., 2011). The 

calibrated model captured the magnitude and time of the soil N2O peaks events. This can 

be ascribed to lowering C:N ratio, however, lowering the C:N ratio can adjust the 

simulated soil N2O closer to measured values (Rafique et al., 2011). The lowest 

simulated soil N2O was 0 ug N ha
-1

 d 
-1

; thus, the DNDC model did not predict soil N2O 

uptake. These results are dissimilar to Syp & Faber, (2017) and might have been as a 

result of an overestimation of N2O fluxes. 

 

The wet season had more soil N2O peaks compared to the dry season, and this similar the 

findings of Deng et al. (2016) and Jiang et al. (2019). The differences in N2O fluxes can 

be attributed to soil temperature, nitrogen, moisture, texture, pH and precipitation 

dynamics (Geng et al., 2017). The peak soil fluxes were high following fertiliser or 

manure application. These results are in line with other studies such as Uzoma et al. 

(2015) and Zhang et al. (2016). The high daily soil N2O fluxes recorded during the wet 
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season can be attributed to effective nitrogen uptake by maize plant that is influenced by 

soil water content. Further, soil moisture increases soluble solutes in the soil that act as 

substrates for microorganism responsible for N2O fluxes through nitrification and 

denitrification process. 

 

The model predicted mostly zero emissions during the dry seasons across the treatments 

which were inconsistent with field observations in the central highlands of Kenya that 

recorded small N2O uptakes (Ortiz-Gonzalo et al., 2018; Macharia et al., 2020). The 

validated DNDC model performed well in simulating both cumulative seasonal and 

annual soil N2O fluxes (Table 4.5). The model performance in this study was similar to 

that of Giltrap et al. (2010) and Abdalla et al. (2011) who reported that based on the 

observed performance evaluation matrices; the simulated and observed soil N2O fluxes 

were acceptable. Modelling efficiency describes the performance of the model in 

predicting measured value, where positive value describes that the model is high 

explained by measured values while negative value ascribing that the simulated value 

represents the model (Smith et al., 1997). The MEi results depicted that they performed 

well in describing N2O fluxes. The cumulative annual findings on zero to intercept linear 

regression slope and R
2
 were within the range of 1.09 and 0.78, respectively reported by 

(Cui et al. 2014). 

 

5.5 The DNDC Model Simulation  

Though the DNDC model performance in simulating daily soil N2O fluxes was fair to 

poor, the overall simulated cumulative seasonal/ annual fluxes were good (Figure 4.2, 

Table 4.5). These results were in agreement with various studies that reported that the 

DNDC model had high discrepancies in simulating daily soil N2O fluxes but accurately 

captured the magnitude of cumulative fluxes (e.g. Uzoma et al., 2015; He et al., 2020). 

The peak simulated and observed soil N2O fluxes were recorded following fertiliser 

application or rainfall event. The first peak occurred immediately after soil fertilisation 

and rainfall event; this peak can be endorsed to both fertiliser application and rainfall 

event. Similar results were reported by Horak & Mukhina (2016) who reported peak N2O 

fluxes following fertiliser application and rainfall event. The second and third peaks were 
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noted during intense rainfall events hence ascribed to rainfall events. According to 

Uzoma et al. (2015), high N2O fluxes were recorded following a rainfall event. The 

rainfall event increases soil moisture and that can trigger denitrification process as 

described by (Horak & Mukhina, 2016). There were more peaks for simulated compared 

to observed results, similar results were recorded by Rafique et al. (2011) this can be 

ascribed to the daily DNDC predication mode as opposed to specific dates of 

measurements on the observed. Despite the model accurately predicting seasonal and 

annual soil N2O fluxes, there were discrepancies in recorded daily fluxes. These 

discrepancies can be ascribed to rainfall events that occur before actual fluxes 

measurement (Horak & Mukhina, 2016). 

 

The simulated and observed soil N2O fluxes were lower compared to similar studies with 

filed data recorded by (Ortiz-Gonzalo et al., 2018; Macharia et al., 2020) and simulation 

data (e.g. Rafique et al., 2011; Deng et al., 2016; Geng et al., 2017). The low predicted 

and observed soil N2O fluxes documented in this study could be ascribed to differences in 

precipitation, soil type and other characteristics, environmental factors, soil temperature 

and soil C:N ratio (Pelster et al., 2017). The DNDC model showed a good prediction of 

maize production (grain, stems, leaves and roots) similar to the findings of (Liu et al., 

2018; Jiang et al., 2019). Generally, the model performed well in simulating maize 

(grain, roots, leaves and stems) production.  

 

Fertiliser application had a significant influence on soil N2O fluxes similar to the 

observations of Agovino et al. (2019), who reported that increased fertiliser application 

leads to increased yields and GHG emissions. The increased grain yield and soil N2O 

emission can be attributed to readily available nitrogen to the soil from the fertiliser 

(Abdalla et al., 2020). Additionally, fertiliser application had the highest emission 

factors. Though manure application had a low emission factor and high yield scaled 

emission, maize grain productivity was low. Manure releases available nutrients slowly 

to the soil Kiboi et al. (2019), which could have caused the low maize productivity. 

Fertiliser and manure combination was effective in mitigating atmospheric GHG 

emissions while significantly increasing maize production. Generally, the observed and 
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simulated emission factors were lower than the IPCC Tier 1 default EFs of 1%. The 

emissions were also lower compared to those recorded in East Africa (Ortiz-Gonzalo et 

al., 2018; Macharia et al., 2020). This depicted that using default Tier 1 EFs overestimate 

GHG emissions from the Central Highlands of Kenya smallholder farming systems. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.1 Overview 

This chapter presents the conclusions and recommendations drawn from the study. The 

chapter also highlights areas of further studies.  

 

6.2 Conclusion 

Smallholder farming systems can be essential entry points in greenhouse gas emissions 

mitigation and adaptation. However, smallholder farming systems are both socially and 

spatially heterogeneous, which can hinder GHG emissions quantification; reporting and 

mitigation as each farm demand a specific approach. Individual farm-based GHG 

emissions quantification and mitigations intervention are quite impractical at a national or 

regional level, thus the need for developing farm typologies that can address their 

heterogeneity and use biogeochemical models. This study demonstrated the use of 

farming systems typology in identifying GHG emissions hotspots, designing 

quantification experiments, assessing the adoption of mitigation measures, and proposing 

climate action policy. The study also evaluated the performance of the DNDC model in 

simulating soil N2O fluxes, maize yields, yield scaled N2O emissions and emissions 

factors in Tharaka-Nithi County. 

 

Land size owned, total tropical livestock unit, nitrogen applied and land size under 

different cropping systems were important variables in typifying smallholder farming 

systems. Based on these variables, GHG quantification priorities can be set in the study 

area and similarly agro-ecological zones in Sub-Saharan Africa. Further, socio-economic 

variables household head education, hired labour, group membership, credit access and 

proportion of income from cropping activities played a significant role in defining farm 

belonging to a farm typology. Since it is not economically possible to quantify 

greenhouse gas at each farm for national GHG inventories, these typologies provide 

plausible entry points in GHG emissions quantification experiments.  
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Given that direct quantification of soil greenhouse gas emissions is expensive and 

impractical in accurately reporting soil GHG emissions, especially in developing 

countries including Kenya, the use of the DNDC model could be a plausible alternative. 

Though the DNDC model performed poorly in simulating daily soil N2O fluxes, it 

accurately captured the cumulative seasonal/ annual fluxes. The observed emission 

factors we on the low end compared with IPCC Tier 1 default factor of 1%. Therefore, 

using the IPPC Tier 1 EFs overestimate soil GHG emissions in the Central Highlands of 

Kenya. Finally, the fertiliser and manure combination is capable of increasing 

agricultural production with minimal increase in agricultural GHG emissions 

significantly. 

 

6.3 Recommendations  

The following recommendations were drawn from the study: 

1. Smallholder farming systems typologies should be used in GHG emissions hotspots 

identification, quantification, simulation, and mitigation. 

2. Policies and intervention measures directed towards increasing agricultural 

productivity while reducing GHG emissions should consider not only soil fertility 

management and tropical livestock unit but also other socio-economic factors 

influencing farmers belonging to different farm typologies. 

3. The DNDC model needs to be improved and developed to accurately predict daily 

emission and occasional uptakes in the central highlands of Kenya.  

4. Use of fertiliser and manure combination should be promoted to farmers to enhance 

agricultural productivity while lowering agricultural tracer gas emissions. 
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6.4 Areas of Further Study 

Further studies need to be conducted to simulate agricultural soil GHG emissions from 

various integrated soil fertility in varying agricultural ecological zones and water 

management technologies that are instrumental in crop performance. A meta-analysis on 

agricultural soil N2O emission factors needs to be conducted to delineate specific 

emission factors to be used in different agro-ecological settings. Finally, there is a need to 

carry out scientific research to determine why the DNDC model did not capture negative 

N2O fluxes. Studies should be implemented to investigate the implication split fertiliser 

application on soil N2O fluxes in Kenya. 
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APPENDIX 

APPENDIX I: INTERVIEW SCHEDULE 

Farming systems characterization and socio economic factors influencing diversity of 

farm typologies 

Date of interview:  _______________ Interviewed by: _________________ 

Start time:_____________________   End time:__________________________ 

1.0 Household head identity 

1.1 Name ________________________1.2 Gender (1=male, 

0=female)___________________ 

1.3 Education level [Refers to completed levels] (1=Non formal education, 2= Primary, 

3=Secondary, 4= Tertiary): __________ 

1.4.   Mobile Number_________________1.5  Age _____________________ 

1.6. Do you keep farm records. 1=Yes, 0=No 

2.0 Social networking 

2.1: Are you a member of a farmers‘ group? (1=Yes, 0=No)  

2.2: Name of farmer group_______________________________________________ 

2.3: Purpose of farmer group:__________________________________________ 

2.4: Have you accessed credit for farming activity in the last 1 year? (1=Yes, 0=No);  

2.5: Purpose of credit__________________________________________________ 

2.6: Have you ever attended training on agriculture enterprises? (1=Yes, 0=No) 

2.7: Nature /purpose of training____________________________________________ 

2.8: Have you been visited by the Extension service? (1=Yes, 0=No) 

 

3.0 CROP FARMING 

3.1: What is your main farming objective?____________________________________ 

3.2: What is your total farm size area (acres) ___________________________________ 

3.3: What is your total cultivated farm size? (acres)__________________________ 

3.4:  Major four crop enterprises_________________________________________

Ward ______ Location:_______ Sub-location: ____________  Village:_________ 

GPS:Long:___________Lat: ______________Altitude (m) _______Way Point Number:_______
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3.5: For how long have you cultivated your farm since you started farming (Years)? __________________________ 

3.6: Farm Density 

Parcel 

ID 

Main Crop/ Animal/ tree 

enterprise 

Size in Acres Who is the main 

manager of the plot 

(See Codes) 

Land tenure (See 

Codes)  

Cropping system 

(See Codes) 

Plot1:      

Plot2:      

Plot3:      

Plot4:      

Plot5:      

Plot6:      

Cropping system: 1=Monoculture, 2=Rotation, 3=Intercropping, 4 = Mixed Cropping  

3.7. Previous long rain cropping activities and harvest data 

P
lo

tN
o
 

 

Crop 

/Na

me 

 

Crop 

Code 

 

Area 

under 

this 

crop in 

acres 

Propagation materials 

(Seed use) 
Mineral Fertilizer Use 

Organic 

Fertilizer Use 

Use 

hired 

labou

r 

(1=Y

es, 

0= 

No) 

Harvest Sales 
Pric

e 

(uni

t) 

Marke

t sold 

Distan

ce to 

marke

t 

Seed type? 
1=Local 

2=Improv

ed 
3=Mixed 

Qty Unit 
Price 

per 

unit 

1
st
 PLANTING 2

nd
 Top dressing 

Qty unit Qty Unit Type 
Code 

below 
Qty Unit 

Type 
Code 

below 
Qty 

Uni

t 

Type 
Code 

below 
Qty 

Uni

t 

1                         

2                         

3                         

4                         
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3.8. Previous short season cropping activities and harvest 

P
lo

tN
o
 

 

Crop 

/Na

me 

 

Crop 

Code 

 

Area 

under 

this 

crop in 

acres 

Propagation materials  Mineral Fertilizer Use 

Organic 

Fertilizer Use 

Use 

hired 

labou

r 

(1=Y

es, 

0= 

No) 

Harvest Sales 

Pric

e 

(uni

t) 

Marke

t sold 

Distan

ce to 

marke

t 

Seed type 
Local=1 

Improved

=2 

Mixed=3 

Qty Unit 
Price 

per 

unit 

1
st
 PLANTING 2

nd
 Top dressing 

Qty unit Qty Unit Type 
Code 

below 
Qty Unit 

Type 
Code 

below 
Qty 

Uni

t 

Type 
Code 

below 
Qty 

Uni

t 

1                         

2                         

3                         

4                         
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4.0 SOIL MANAGEMENT AND LAND CONVERSION 

4.1 Soil Management in the last 12 months 

Soil Fertility Management Household implemented any of 

the practices for the last 12 

months? [1= Yes, 0= No] 

Land area (acres ) 

under practice 
Crop Enterprise (s) Plot Number (s) 

Planting of strip grass     

Bunding and tied ridging     

Contour ploughing     

Building Contour Barrier     

Mulching- Livestock feeds     

Building terraces     

Agroforestry trees     

Conservation Agriculture?     

Other (Specify)     
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5.0 MANAGEMENT OF ORGANIC RESOURCES 

5.1: Do you use organic manures (livestock or plant based) in cultivating crops? (1=Yes, 0=No) 

5.2: Please indicate your organic resources management practices in the field. Please fill in the organic resources which you use? 

Organic fertilizer Period of planting when 

farmer uses it 

(tick as applicable)* 

Amount applied  For how long 

have you used 

organic 

residues? 

(Years) 

Sources 

of 

organic 

resources 

Plots ID/ 

Crops 

Area 

applied 

(Acres) 

Constraints 

of organic 

manures 

Before At After       

Animal manure  

 

        

Crop residues (Mulching and 

incoorporation into the soil) 

 

 

        

Green manure (specify)  

 

        

Compost  

 

        

Other (specify)  

 

        

Sources of organic resources: 1=Farm, 2=Neighbours, 3= Bought 
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6.0 LIVESTOCK SYSTEM 

Livestock Inventory 

6.1. Does this Household keep Livestock? [1=Yes, 2=No] _______________If Yes, fill the table below. If completely No Livestock is kept, skip to next 

section 

Type of Livestock Owned 

in the 

last 12 

months 

1= 

Yes, 

2= No] 

Sales in the last 

12 months 

Purchases in the last 

12 months 

No. 

Currently 

Owned 

Average 

Value per 

Head [if no 

sales or 

purchases] 

(KShs) 

Feeding 

regime 

Code 

below 

Feed 

stock 

(See 

code) 

Main 

livestock 

product 

Code 

below 

 

Quantity 

Livestock 

ID 

Name No. 

sold 
Total 

amount 

received 

(Kshs) 

No. 

Purchased 
Total 

amount 

paid 

(KShs) 

1 
Cow –female 

cattle 
           

2 

Heifer –young 

female cattle >12 

months  

           

3 
Bull – mature 

male cattle 
           

4 

Young Bull- 

young male 

cattle  >12 

months 

           

5 

Calf- young 

male/female 

cattle < 12 

months 

           

6 
Ram – male 

sheep 
           

7 Ewe - female            
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sheep 

8 
Lamb- young 

one of sheep 
           

9 
Buck – male 

goat 
           

10 
Doe – female 

goat 
           

11 
Kid - young one 

of goat 
           

12 
Poultry- chicken, 

goose,  
           

13 Pigs            

14 Other (specify)            

 

 

7.0  HOUSEHOLD DEMOGRAPHIC AND WEALTH INFORMATION 

7.1:  Family Labour 

Family Labor Use in the 

Last 12 months 
Males Females 

Household Members 
Total No. in 

the household 
No. available for 

full-time farming 
No. available for 

part-time farming 
Total No. in 

the household 

No. available for 

full-time farming 

No. available 

for part-time 

farming 

No. of persons aged below 16 

years 

      

FEEDING REGIMES:1=Full-time Zero-grazing, 2=Partly Zero-grazing, 3= Grazing, 4=Tethering, 5=Other specify _______________ 

FEED STOCK: 1=Pasture, 2=Crop residues, 3=Livestock feeds, 4=Fodder crops, 5= Household wastes, 6= Others 

PRODUCTS:1=Manure, 2=Milk,3=Eggs, 4=Hides/ Skin,5= Wool, 6=Meat,7=Other 
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No. of persons aged 16-65 

years 

      

No. of persons aged above 65 

years 

      

 

7.2  HOUSEHOLD SALE OF LABOR (IN THE LAST 12 MONTHS) 

Exclude those aged below 15 years 

Off-farm activity Number of 

household members 

involved 

Months involved in 

the last 1 year 

Total amount earned per month 

1 Farm laborer    

2 Casual wage earner    

3 Salary earner (e.g., teacher, police 

man) 
   

4 Petty business/ Trading (e.g. Butcher, 

Charcoal burning, Trading farm 

produce, kiosk) 

   

5 Artisanal (e.g. Bicycle 

repair/mechanics, Brick making, 

Carpentry, Construction, Tailor) 

   

6 Other (specify)    

*The average monthly earnings, excluding operational costs (fuel, goods, hiring labors, etc) and fixed costs or capital 
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7.3 REMITTANCE  

7.4: Did any of the members of the household receive any earnings in form of Remittance (Both in cash & in kind)? [1=Yes, 2=No] __________________ 

If Yes, fill the table below. If no move to section 9.5 

    

Remittance in Cash Remittance in Kind 

Was the remittance in 

the last 12 months 

constant? [1=Yes, 

2=No] 

If Yes, 

indicate the 

average 

earnings per 

month (KShs)  

If NO Was the 

remittance 

in the last 

12 months 

constant? 

[1=Yes, 

2=No] 

If Yes, what 

was the 

average value 

of the 

remittance per 

month (KShs)  

If NO 

on average, how 

many months in the 

last 12 months did 

you receive 

remittance in cash? 

Average 

earnings 

per month 

(KShs) 

on average, how 

many months in 

the last 12 

months did you 

receive 

remittance in 

kind? 

what was the 

average 

value of the 

remittance 

per month 

(KShs) 
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7.5: HOUSEHOLD WEALTH AND ASSETS  

Asset 

No. of 

items 

currentl

y owned 

No. of items 

purchased in 

the last 12 

months 

Total (current) value 

(KSh) 

Owned+purchased 
 

Asset 

No. of items 

currently 
owned 

No. of items 

purchased in 

the last 12 

months 

Total (current) 

value (KSh) 

Owned+purch

ased 

Farm Assets ID    Other 

assets 
ID    

Automobile 

(Tractors, 

Trailers, Vehicles, 

Motorcycle) 

1    Grinders 15    

Carts 2    Bicycle 16    

Donkeys 3    Radio/ 

Tape-

recorder 

17    

Wheelbarrows 4    Car 

Batteries 
18    

Ploughs  5    Television 19    

Borehole 6    Mobile 

Phones 
20    

Well 7    Axe 21    

Sickle 8    Fork Jembe 22    

Hand hoe 9    Utensils 23    

Chaff cutter for 

fodder 
10    Saw 24    

Spraypumps 11    Tool box 26    

Diesel pumps 12    Lanterns 27    

Water tanks 13    Generators 28    

Pangas 14    Others      
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7.6: What is your occupation (formal) other than farming? _________________________________ 

7.7: Estimated monthly salary from occupation (Ksh) ____________________________ 

7.8: What are the main farm products that you sell? 

 

Product Estimated annual income (Kshs) 

1:  

2:  

3:  

4:  

End Thank you 

 

 


