• Login
    View Item 
    •   Repository
    • Open Access Articles
    • Open Access Journals
    • Chemistry
    • View Item
    •   Repository
    • Open Access Articles
    • Open Access Journals
    • Chemistry
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of Deformation during Stamping on Structure and Property Evolution in 3rd Generation AHSS

    Thumbnail
    View/Open
    Full Text (2.276Mb)
    Date
    2018-06
    Author
    Branagan, Daniel
    Parsons, Craig
    Machrowicz, Tad
    Cischke, Jonathon
    Frerichs, Andrew
    Meacham, Brian
    Cheng, Sheng
    Justice, Grant
    Sergueeva, Alla
    Metadata
    Show full item record
    Abstract
    Over the past decade extensive development of advanced high strength steel (AHSS) was driven by the demand from the automotive industry for stronger materials that can enable lightweighting to meet increasing fuel efficiency requirements. However, achievement of higher strength in many AHSS grades comes with reductions in ductility, leading to geometric constraints on formability and limiting their application. In this paper, a 3rd Generation AHSS with a compelling property combination of high tensile strength of ~1200 MPa and total elongation > 40% was used for laboratory and stamping studies. Various auto related laboratory tests were done including tensile testing, 180 degree bending, bulge testing, and cup drawing to estimate the steel’s formability under different applied conditions. Additionally, since laboratory testing provides only an estimation of the potential stamping response, the 3rd Generation AHSS sheet was stamped into B-pillars under industrial stamping conditions. Non-destructive and destructive analysis of the resulting stampings were done to evaluate the microstructural and property changes occurring during stamping. Significant strengthening of material in the stamped part is attributed to the structural changes through the complex Nanophase Refinement and Strengthening mechanism.
    URI
    https://doi.org/10.4236/ojmetal.2018.82002
    http://hdl.handle.net/123456789/1920
    Collections
    • Chemistry [106]

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    University of Embu©
    Contact Us |
    Designed by 
    Atmire NV